

User guide

Z8F80648352

About this document

Scope and purpose

This user guide introduces the brushed *direct current (DC)* shield with the TLE9562-3QX. This document provides detailed information on the content, layout and usage of the board. Use it in conjunction with the TLE9562-3QX datasheet, which contains full technical details on the device specification and operation.

Intended audience

Users who develop applications with the TLE956x family.

User guide

Important notice

Important notice

"Evaluation Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

DC Shield TLE9562-3QX **User guide**

Safety precautions

Safety precautions

Please note the following warnings regarding the hazards associated with development systems. Note:

Table 1

Safety precautions

Caution: The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.

Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.

Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.

Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury

User guide

Table of contents

Table of contents

	About this document	1
	Important notice	2
	Safety precautions	3
	Table of contents	4
1	The board at a glance	
1.1	Delivery content	5
1.2	Block diagram	6
1.3	Main features	7
2	Hardware description	8
2.1	Board overview and connectors	8
2.1.1	Board design	
2.1.1.1	Schematics	15
2.1.1.2	Layout	
2.1.1.3	Bill of material	21
3	Getting started	
3.1	Arduino UNO controller board	24
3.2	Config Wizard for MOTIX™ Motor System ICs with the uIO-Stick	24
3.2.1	Download the graphical user interface for the uIO-Stick	
3.2.2	Start the configuration Wizard for TLE9562-3QX	25
4	Config Wizard for MOTIX™ Motor System ICs - control tab pages	
4.1	SBC tab page	27
4.2	Bridge driver tab page	33
5	References and appendices	36
5.1	Glossary	36
5.2	References	37
	Revision history	38
	Disclaimer	39

4

infineon

1 The board at a glance

1 The board at a glance

The TLE9652-3QX brushed direct current shield is a simple and easy-to-use tool for getting familiar with the device features and for first application tests.

Use the evaluation board either with a uIO-Stick or stacked on an Arduino UNO board.

The uIO-Stick is the interface between the PC and the application board, such as the TLE9562-3QX.

The TLE9562-3QX *serial peripheral interface (SPI)* communication is emulated by the uIO-Stick, which you can control through the *graphical user interface (GUI)*.

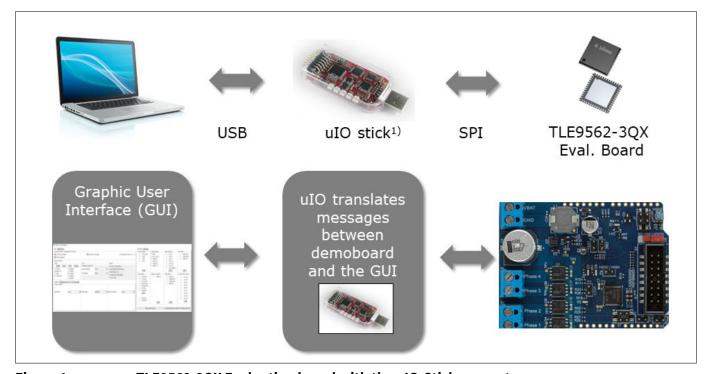


Figure 1 TLE9562-3QX Evaluation board with the uIO-Stick concept

1.1 Delivery content

The cardboard box includes one brushed direct current shield TLE9562-3QX board. The Arduino UNO board and the uIO -Stick are not included and you need to order them separately.

For further details about the uIO-Stick refer to: www.hitex.com/uIO

For further information about the Arduino UNO controller board refer to: Arduino - Home.

infineon

1 The board at a glance

1.2 Block diagram

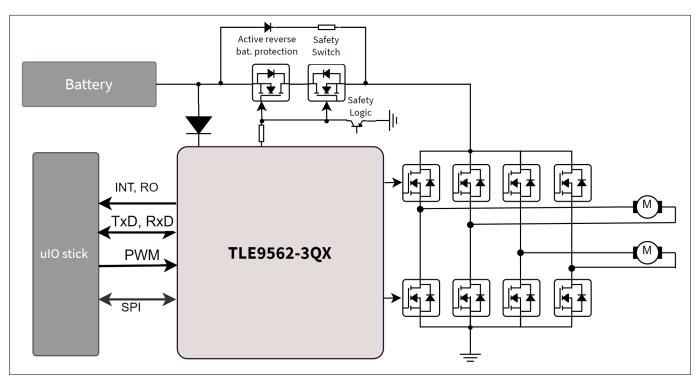


Figure 2 Application circuit for a bi-directional motor control with the TLE9562-3QX using a uIO-Stick

Note: Using the TLE9562 shield board with a uIO-Stick, you can spin a brushed direct current motor (bidirectional).

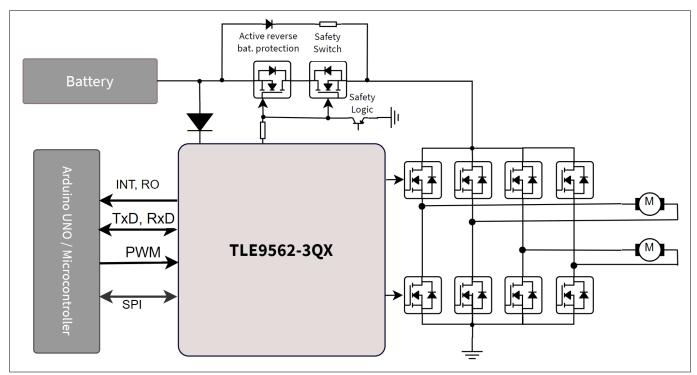


Figure 3 Application circuit for a bi-directional motor control with the TLE9562-3QX using an Arduino UNO board

User guide

1 The board at a glance

Note:

Using the TLE9562 shield board with the Arduino UNO board, you can spin a brushed direct current motor (bi-directional).

1.3 Main features

The TLE9562 evaluation board includes:

- A MOTIX[™] TLE9562-3QX
- A 16-pin connector for the uIO-Stick
- A placeholder for the pin header to stack the motor control shield directly on top of an Arduino UNO controller board¹⁾
- An active reverse battery protection circuitry with IPZ40N4S5L-2R8
- Four IAUC60N04S6N031H with dual N-channel MOSFETs
- Hall sensor connectors

Table 2 Technical data

Voltage supply	Maximum current
Typ. 12 V (max. 28 V)	16 A

Due to manufacturing mistake the holes are filled and they need to be cleaned before connecting the pin header.

infineon

2 Hardware description

2 Hardware description

The TLE9562-3QX brushed direct current shield is compatible with the uIO-Stick. The uIO-Stick plugs into the TLE9562-3QX main board with a 16-pin header, and allows an easy interface to the microcontroller through universal serial bus (USB) for SPI communication.

2.1 Board overview and connectors

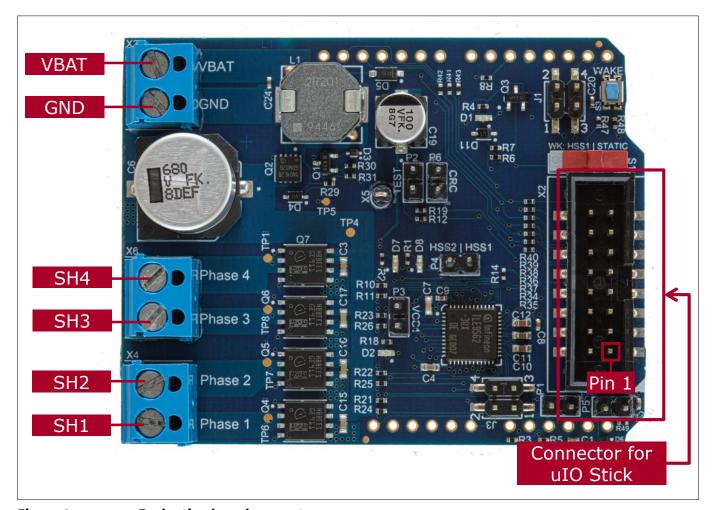


Figure 4 Evaluation board connectors

2 Hardware description

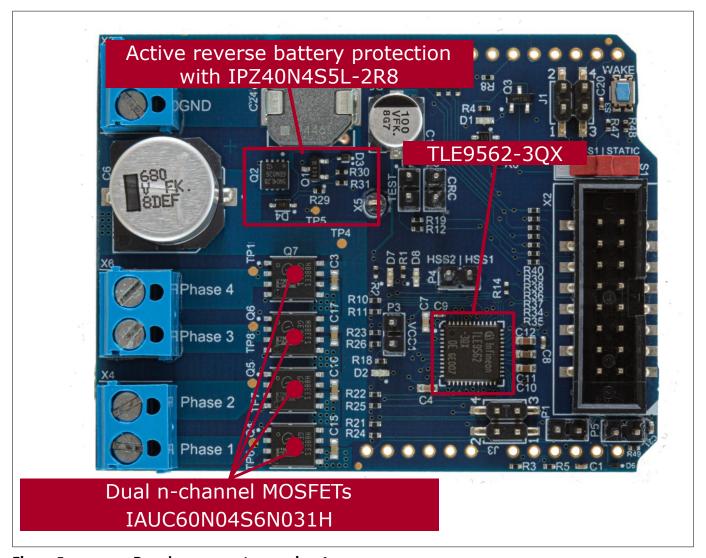


Figure 5 **Board components overview 1**

2 Hardware description

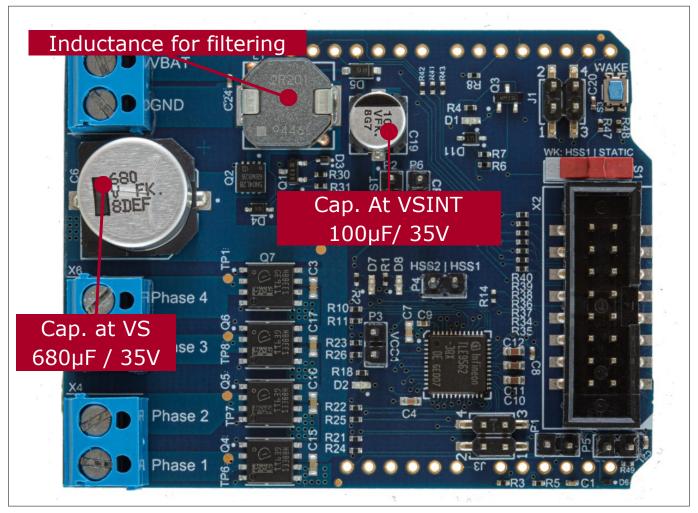


Figure 6 **Board components overview 2**

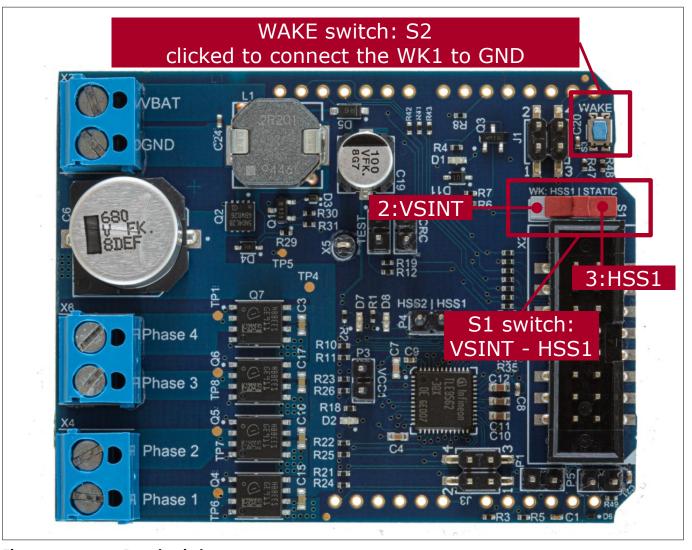


Figure 7 **Board switches**

Table 3 **Switches and positions**

Switches	Positions	Description
Wake switch S2	-	Wake the TLE9562-3QX up and exit sleep mode
Switch S1	Position 2:VSINT	To use the interrupt function properly, ensure that the switch S1 is in position 2:VSINT. Otherwise the interrupt is bound to the <i>pulse-width modulation (PWM)</i> of HSS1 (HS1) and called periodically, if this HSS1 (HS1) is used.
	Position 3:HSS1	To use the cyclic sense feature, set the switch S1 to position 3:HSS1 (HS1). One of the high-side drivers is switched on periodically and supplies some external circuits connected to the WK inputs (for more details refer to sub-chapter 5.7 of the datasheet).

2 Hardware description

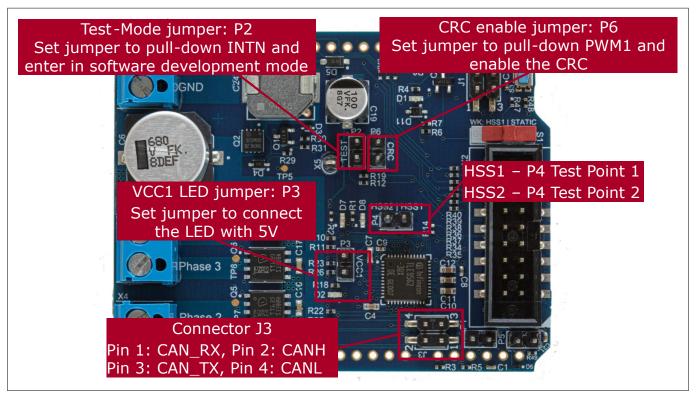


Figure 8 **TLE9562 jumpers overview**

Note:

The software development mode is a dedicated SBC (system basis chip) configuration, which is useful Note: for software development. To enter this mode, set the jumper P2. In software development mode the watchdog is enabled, but does not trigger the transition to fail-safe mode or restart mode.

The SPI interface includes also 8 bits used for cyclic redundancy check (CRC) to ensure data integrity on sent or received SPI command. Set the jumper P6 to pull down the PWM1 pin to ground and enable the CRC.

infineon

2 Hardware description

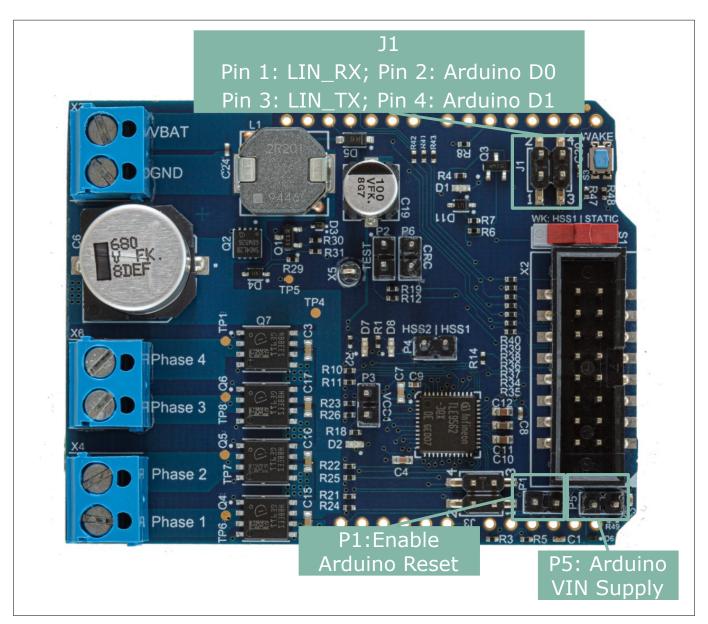


Figure 9 Arduino jumpers

Set the jumper P5 to connect VIN of Arduino with the 5 V regulator (VCC1) on the TLE9562 shield. For the Arduino jumper settings refer to https://motor-system-ic-tle956x.readthedocs.io/en/latest/hardware-platforms.html#id4

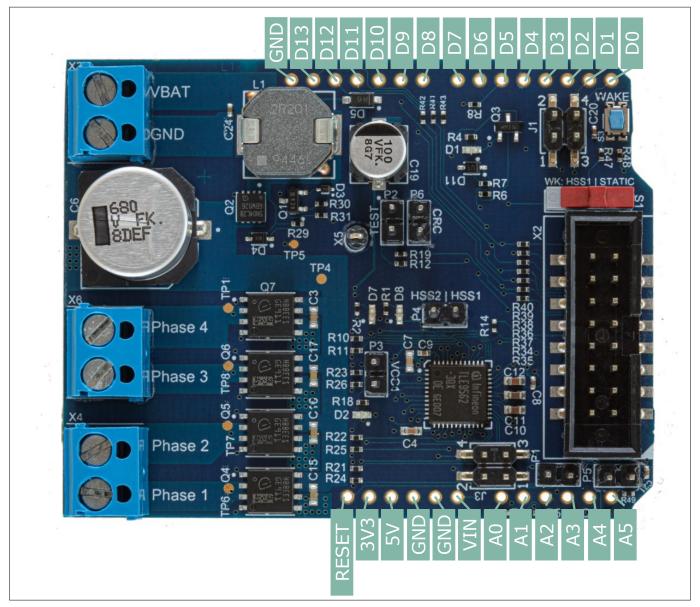


Figure 10 **Arduino connectors**

For the Arduino pins details refer to https://motor-system-ic-tle956x.readthedocs.io/en/latest/hardwareplatforms.html#dc-motor-shield-with-tle9562.

infineon

2 Hardware description

2.1.1 Board design

2.1.1.1 Schematics

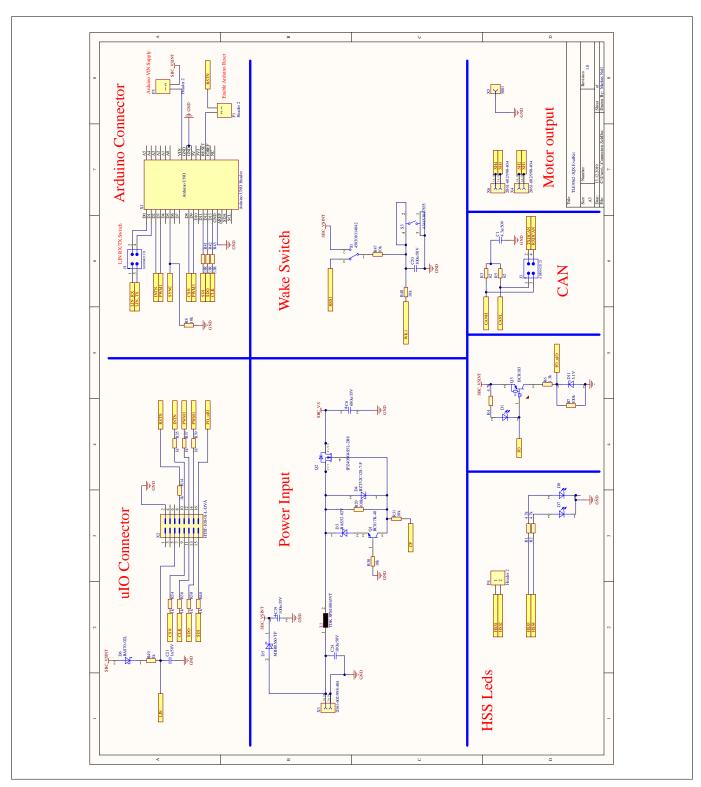


Figure 11 Schematic 1/3

2 Hardware description

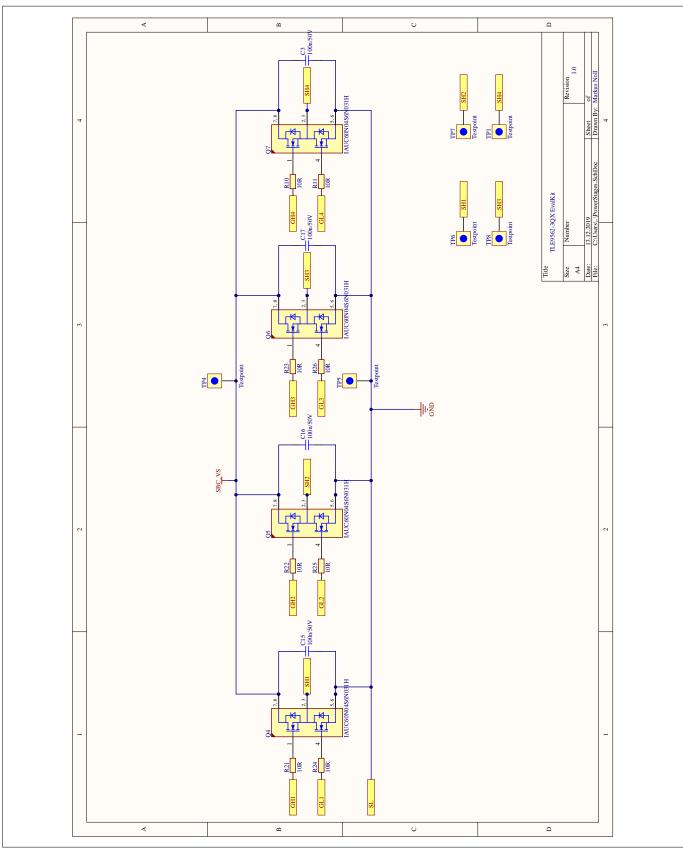


Figure 12 Schematic 2/3

infineon

2 Hardware description

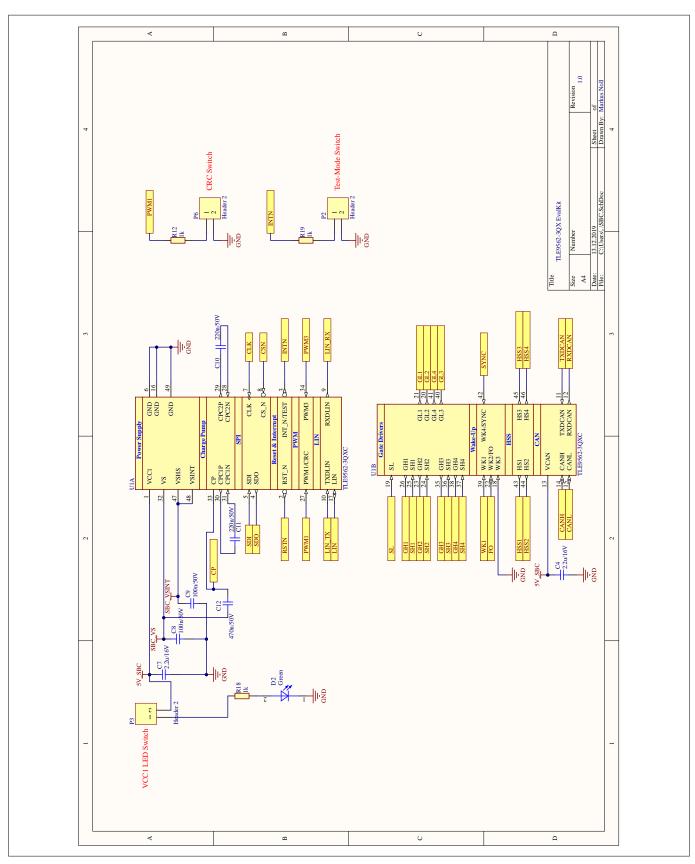


Figure 13 Schematic 3/3

2 Hardware description

Layout 2.1.1.2

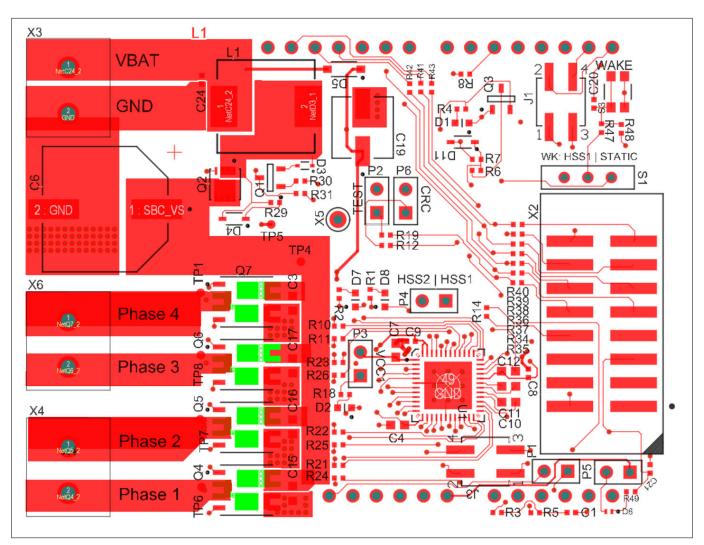


Figure 14 Top layer with overlay

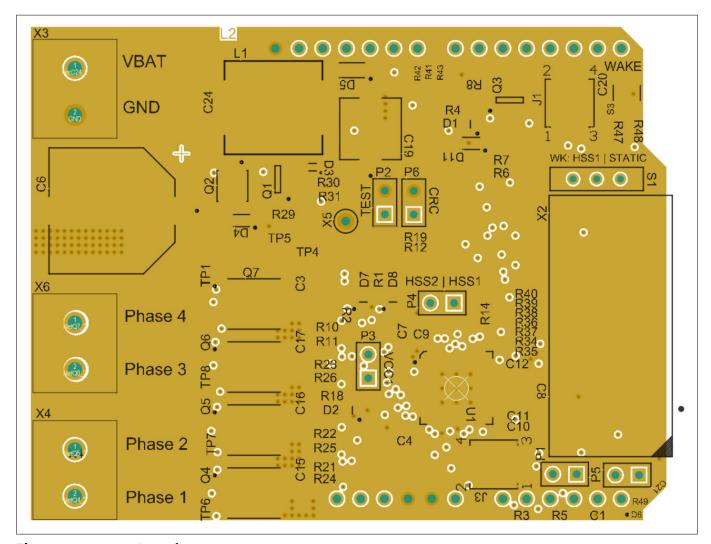


Figure 15 Inner layer 1

(infineon

2 Hardware description

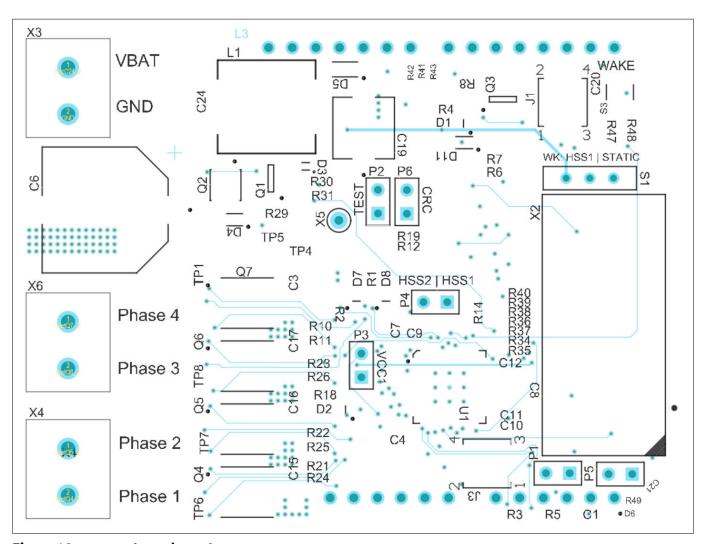


Figure 16 Inner layer 2

2 Hardware description

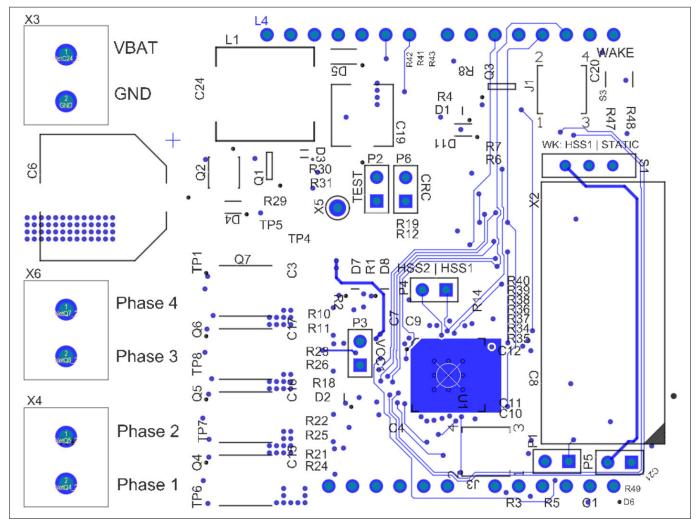


Figure 17 **Bottom layer with overlay**

Bill of material 2.1.1.3

Designator	Value	Qty	Description	Footprint	Manufacturer
C1	4.7 nF/50 V	1	Chip Multilayer Ceramic Capacitor for General Purpose	CAPC1005X60N	TDK Corporation
C3, C15, C16, C17	100 nF/50 V	4	Multilayer Ceramic Chip Capacitor, Automotive Grade, Soft Termination	CAPC1608X90N	AVX
C4, C7	2.2 uF/50 V	2	Multilayer Ceramic Chip Capacitor, Automotive Grade, Soft Termination	CAPC1708X95N	TDK Corporation
C6	680 uF/35 V	1	Aluminum Electrolytic Capacitors	CAPAE1350X1400N	Panasonic
C8, C9, C20, C24	100 nF/50 V	4	Chip Multilayer Ceramic Capacitor for General Purpose	CAPC1005X60N	TDK Corporation

DC Shield TLE9562-3QX User guide

infineon

2 Hardware description

Designator	Value	Qty	Description	Footprint	Manufacturer
C10, C11	220 nF/50 V	2	Multilayer Ceramic Chip Capacitor, Automotive Grade, Soft Termination	CAPC1708X95N	TDK Corporation
C12	470 nF/50 V	2	Multilayer Ceramic Chip Capacitor, Automotive Grade, Soft Termination	CAPC1708X95N	TDK Corporation
C19	100 uF/35 V	1	Surface Mount Aluminium Electrolytic Capacitor	CAPAE660X800N-2	Panasonic
C21	1 nF/50 V	1	Chip Multilayer Ceramic Capacitor for General Purpose	CAPC1005X60N	TDK Corporation
D1, D7, D8	Red	1	Surface Mount LED, Super Red, 630nm	LED-SMD-LS L29K- XXXX-1	OSRAM Opto Semiconductors
D2	Green	1	Surface Mount LED, Green, 570nm	LED-SMD-LG L29K- XXXX-24	OSRAM Opto Semiconductors
D3	BAS52-02V	1	Silicon Schottky Diode	SODFL1608X59N	Infineon Technologies
D4	BZT52C12S-7-F	1	Surface Mount Zener Diode	SOD2513X120N	Diodes Incorporated
D5	MBR0560-TP	1	Schottky Rectifier, 0.5A/60V	SOD3716X135N-2	Micro Commercial Components
D6	BAS70-02L	1	Schottky Rectifier, 0.5A/60V	DFN100X60X50-2N-V	Infineon Technologies
D11	5.1 V	1	Small Signal Zener Diode, GDZ-G- Series/5.1V	SOD2713X115N	Vishay General Semiconductor
J1, J3	61000421121	2	SMT Vertical Pin Header WR-PHD, Pitch 2.54 mm, Dual Row, 4 pins	61000421121	
L1	1.5 uH	1	SPM10065VT	SPM10065VT	TDK Corporation
P1, P2, P3, P4, P5, P6	Header 2	6	Header, 2-Pin	HDR1X2	
Q1	BC817K-40	1	NPN Silicon AF Transistor	SOT95P240X110-3N -1	NXP
Q2	IPZ40N04S5L-2 R8	1	OptiMOS-5 N- Channel Enhancement Mode Power-Transistor, VDS 40V, ID 40A	TSDSON-8-33-V	Infineon Technologies
Q3		1	PNP Silicon Digital Transistor	SOT95P240X110-3N -1	Infineon Technologies
Q4, Q5, Q6, Q7	IAUC60N04S6N 031H	4	OptiMOS-6 N- Channel	PG-TSON-8-56	Infineon Technologies

User guide

2 Hardware description

Designator	Value	Qty	Description	Footprint	Manufacturer
R1, R2, R4,	4.7 k	3	Standard Thick Film Chip Resistor	RESC1005X40N	Vishay
R3, R5	62	2	Standard Thick Film Chip Resistor	RESC1005X40N	Vishay
R6	3.3 k	1	Standard Thick Film Chip Resistor	RESC1005X40N	Vishay
R7, R29	100 k	2	Standard Thick Film Chip Resistor	RESC1005X40N	Vishay
R8, R30, R31, R47, R48	10 K	5	Standard Thick Film Chip Resistor	RESC1005X40N	Vishay
R10, R11, R21, R22, R23, R24, R25, R26	10 R	8	Standard Thick Film Chip Resistor	RESC1005X40N	Vishay
R12, R14, R18, R19, R34, R35, R36, R37, R38, R39, R40, R49	1 k	12	Standard Thick Film Chip Resistor	RESC1005X40N	Vishay
R41, R42, R43	33 R	3	Standard Thick Film Chip Resistor	RESC1005X40N	Vishay
S1	450301014042	1	10x2.5mm THT WS- SLTV	450301014042	
S3	434153017835	1	3.5x2.9mm SMD J- Bend WS-TASV, height 1.7 mm, 350 gf	434153017835	
TP1, TP4, TP5, TP6, TP7, TP8	Testpoint	6		Testpoint	
U1A, U1B	TLE9562-3QXC	1	Bridge SBC Family, PLGM	QFN50P700X700X90 -49N-3-1	Infineon Technologies
X1	Arduino UNO Header	1		Arduino UNO Header	
X2	HTST-108-01-L- DVÂ	1	SMT, .025" Shrouded SQ POST IDC Headers , 2.54mm pitch, 16- pin Vertical, Double row	CON-M-SMD- HTST-108-01-L-DV	Samtec
X3, X4, X6	20020316- G021B01LF	3	Connector	20020316G021B01L F	
X5	5001	1	Test Point THT, Black	CON-THT-TP-5001	Keystone Electronics Corp.

Infineon

3 Getting started

Getting started 3

There are two options to operate the TLE9562 brushed direct current shield:

- Stacked on an Arduino UNO board or compatible
- Config Wizard for MOTIX[™] Motor System *integrated circuit (IC)*s with uIO-Stick

Arduino UNO controller board 3.1

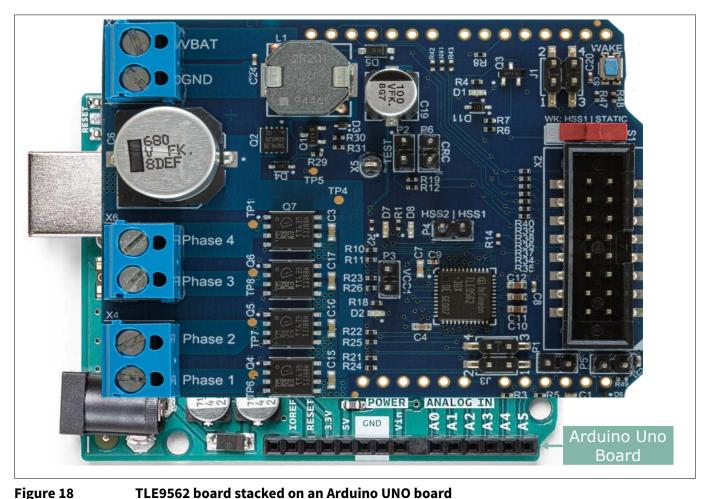


Figure 18

Infineon offers the TLE9562 device driver to provide an application programming interface (API) to configure the devices.

TLE9562 device driver is available here: https://www.infineon.com/cms/en/product/power/motor-control-ics/ brushed-dc-motor-control-ics/dc-motor-system-ics/tle9562-3qx/

Example codes to operate with an Arduino UNO board are available here: https://github.com/Infineon/motorsystem-ic-tle956x

Before using the brushed *DC* shield with an Arduino, refer to Arduino getting started for more information.

Config Wizard for MOTIX™ Motor System ICs with the uIO-Stick 3.2

The Config Wizard for MOTIX™ Motor System ICs is a software tool running on a PC or laptop and providing a GUI to control the TLE9562-3QX on the board.

Use a uIO-Stick to interface the boards to the USB port of the PC or laptop.

3 Getting started

3.2.1 Download the graphical user interface for the uIO-Stick

Config Wizard for MOTIX™ Motor System *IC*s allows easy configuration of Automotive Motor System IC products. To install the *GUI* from the Infineon development center, follow the steps below:

- **1.** Go to Infineon Developer Center Launcher
- 2. Follow the instructions provided on the launcher web page
- 3. Launch the Infineon Developer Center Launcher on your computer
- 4. Select Manage Tools
- 5. Search and install Config Wizard for MOTIX™ Motor System ICs
- **6.** After the installation click **Start** on the launch tool

Figure 19 Starting the Config Wizard for MOTIX™ Motor System ICs

7. Click on the TLE9562 SHIELD

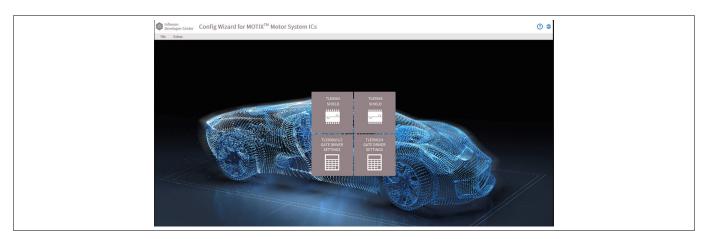


Figure 20 TLE9562 SHIELD selection

3.2.2 Start the configuration Wizard for TLE9562-3QX

The uIO-Stick requires to be programmed when first used in combination with the Config Wizard to control the TLE9562-3QX.

To program the uIO-Stick and get started with the Config Wizard, follow the steps listed below:

1. Set the Jumper P2 to pull down the INT/TEST pin and enable the device to enter in software development mode

User guide

3 Getting started

- 2. Set the Jumper P3 to connect the LED to the LDO VCC1 (5 V regulator)
- **3.** Connect the uIO-Stick to the *USB* port
- **4.** Supply the board connecting the *voltage supply (VS)*
- 5. Start the Config Wizard for Motor System IC
- **6.** Select the tab **Extras**
- 7. Select Update uIO

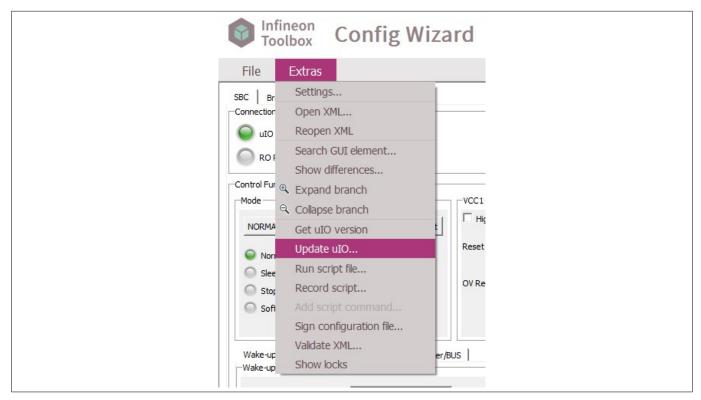


Figure 21 Update uIO

8. Click Yes

Figure 22 Pop-up window

9. Select uIO.V222.hex and open the valid version at the creation time of the document

4 Config Wizard for MOTIX™ Motor System ICs - control tab pages

Config Wizard for MOTIX™ Motor System ICs - control tab 4 pages

SBC tab page 4.1

SBC Bridge Driver Connection Status / Signalisation Pin Status			
uIO Stick connected	Target IC accessable	uIO Fimware Version: 2 . 2 . 2	
RO Pin activated	INT Pin activated	FO1 Pin activated	

Figure 23 Two main tabs: SBC, Bridge Driver

Table 4 Legend Color **Description** SBC (system basic chip): Overview (selected in this view) **Bridge Diver**

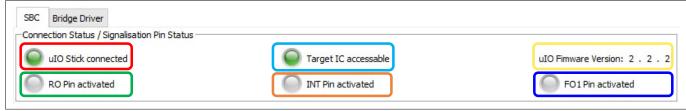


Figure 24 **Connection Status, Signaling Pin Status**

Table 5 Legend

Color	Status indicator	Description
	uIO stick connected	Communication between the uIO-Stick and the TLE9562-3QX is connected and is working
	Target <i>IC</i> accessible	-
	uIO Firmware version	Firmware version of the connected uIO
	RO Pin activated	-
	INT Pin activated	-
	Fail Output Pin activated	-

User guide

4 Config Wizard for MOTIX™ Motor System ICs - control tab pages

Figure 25 **GUI - SBC overview**

Table 6 Legend

Color	Description
	Connection status/Signalisation pin status
	Control function
	Available tabs: • Wake-up (WK) • PWM/Interrupt • HS1-HS4 • Timer/BUS
	SBC (system basis chip) Status

User guide

4 Config Wizard for MOTIX™ Motor System ICs - control tab pages

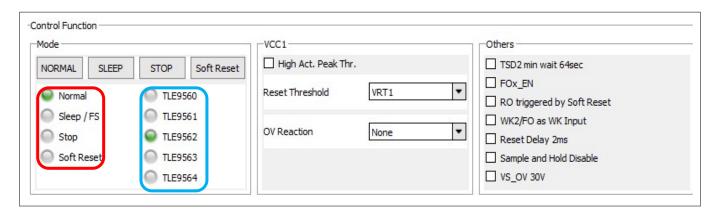


Figure 26 **SBC: Control function**

Table 7 Legend

Color	Description
	Mode, for example Sleep/Fs → Normal , check uIO connection and click on NORMAL
	Product identifier

DC Shield TLE9562-3QX User guide

4 Config Wizard for MOTIX™ Motor System ICs - control tab pages

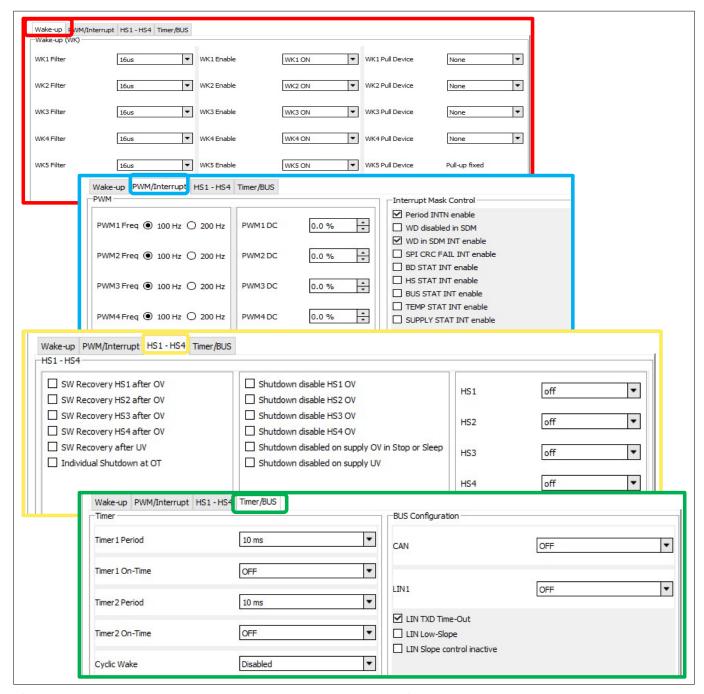


Figure 27 SBC: Wake-up, PWM/Interrupt, HS1-HS4, Timer/BUS

Table 8 Legend

Color	Description
	Wake-up
	PWM/Interrupt
	HS1 – HS4
	Timer/BUS

4 Config Wizard for MOTIX™ Motor System ICs - control tab pages

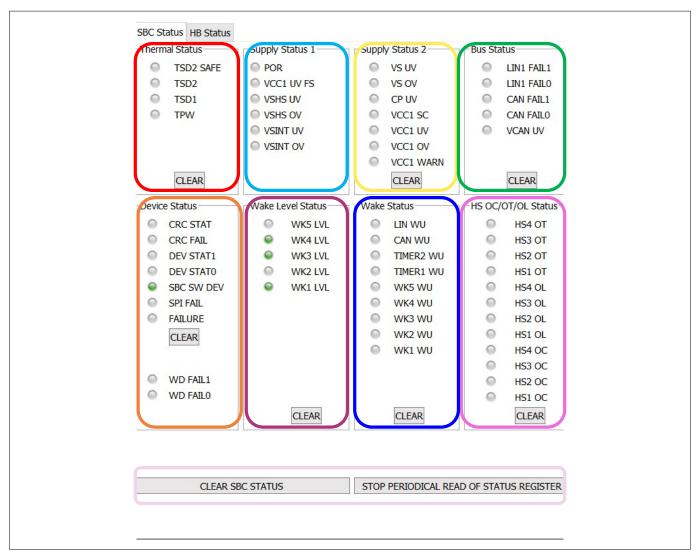


Figure 28 **SBC status**

Table 9	Legend
1able 5	Legena

Color	Description
	Thermal Status
	Supply Status 1
	Supply Status 3
	Bus Status
	Device Status
	Wake Level Status
	Wake Status
	HS OC/OT/OL Status
	Clear SBC Status

User guide

4 Config Wizard for MOTIX™ Motor System ICs - control tab pages

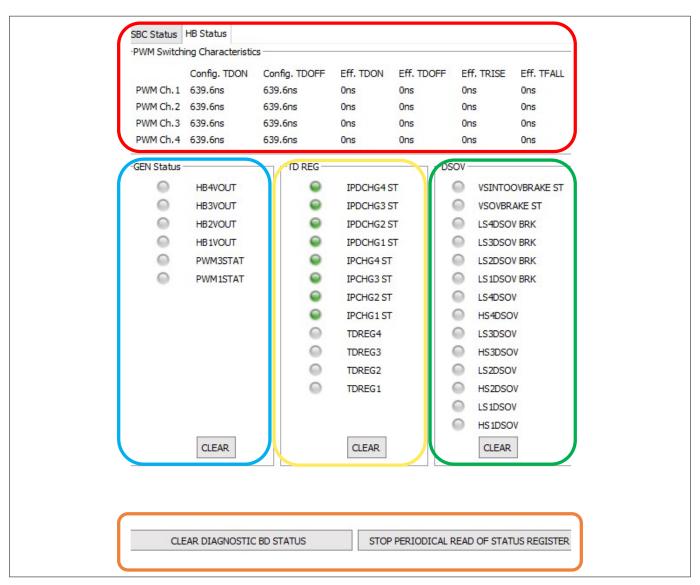


Figure 29 Half-Bridge (HB) Status

Table 10 Legend

Color	Description
	PWM Switching Characteristics
	GEN Status
	TD REG
	DSOV
	Clear Diagnostic Bridge Driver (BD) Status

4 Config Wizard for MOTIX™ Motor System ICs - control tab pages

Bridge driver tab page 4.2

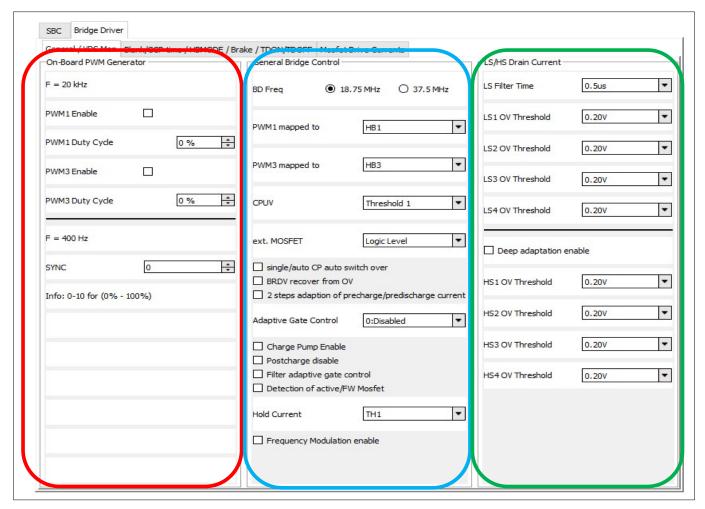


Figure 30 **Bridge driver: General, VDS monitoring**

Table 11 Legend

Color	Description
	On-Board <i>PWM</i> Generator
	General Bridge Control
	LS/HS Drain Current

User guide

4 Config Wizard for MOTIX™ Motor System ICs - control tab pages

Figure 31 Blank/CCP time, HBMODE, Brake, TDON/TDOFF timing

Table 12 Legend

Color	Description
	Blank time/CCP time
	HBMODE/Pre-charge time; Pre-discharge time
	Brake
	TDON timing/TDOFF timing

DC Shield TLE9562-3QX User guide

4 Config Wizard for MOTIX™ Motor System ICs - control tab pages

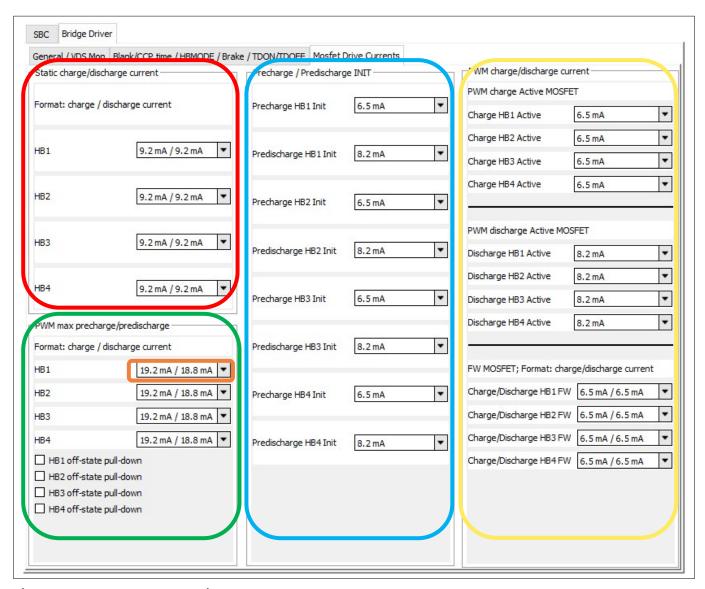


Figure 32 MOSFET Drive currents

Table 13 Legend

Color	Description
	Static charge current/static discharge current
	Pre-charge initial/pre-discharge initial
	PWM charge current/PWM discharge current
	PWM max. Pre-charge/PWM max. Pre-discharge
	19.2 mA: Pre-charge/18.8 mA: Pre-discharge

User guide

5 References and appendices

5 References and appendices

5.1 Glossary

API

application programming interface (API)

A set of defined rules that enables various software components to communicate with each other.

CRC

cyclic redundancy check (CRC)

A procedure that uses a checksum to check the validity of a data transfer.

DC

direct current (DC)

One-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC).

ESD

electrostatic discharge (ESD)

A sudden and momentary flow of electric current between two electrically charged objects caused by contact, an electrical short or dielectric breakdown.

GUI

graphical user interface (GUI)

An interface that enables users to interact with electronic devices through icons and visual indicators.

IC

integrated circuit (IC)

A miniature electronic circuit built on the surface of a thin substrate of a semiconductor material.

PWM

pulse-width modulation (PWM)

A technique to encode an analog value into the duty cycle of a pulsing signal with arbitrary amplitude.

SPI

serial peripheral interface (SPI)

A synchronous serial communication interface specification used for inter-chip communication, primarily in embedded systems.

USB

universal serial bus (USB)

An industry standard that defines cables, connectors, and communication protocols used in a bus for connection, communication, and power supply between computers and electronic devices.

٧S

voltage supply (VS)

DC Shield TLE9562-3QX User guide

5 References and appendices

5.2 References

- [1] Infineon, TLE9562-3QX datasheet: https://www.infineon.com/cms/en/product/power/motor-control-ics/brushed-dc-motor-control-ics/dc-motor-system-ics/tle9562-3qx/
- [2] Infineon, IAUC60N04S6N031H datasheet: https://www.infineon.com/cms/en/product/power/mosfet/automotive-mosfet/iauc60n04s6n031h/
- [3] Infineon, MOTIX™ SBC TLE9562 device driver: https://softwaretools.infineon.com/tools/com.ifx.tb.tool.tle9562devicedriver
- [4] Arduino UNO board: https://www.arduino.cc/
- [5] C++ library for Infineon's motor system IC TLE956x family: https://github.com/Infineon/motor-system-ic-tle956x#motor-system-ic-tle956x-library
- [6] Infineon, Arduino Getting started: https://motor-system-ic-tle956x.readthedocs.io/en/latest/sw-frmwk/arduino/index.html
- [7] Infineon, Getting started with the evalkits DC/BLDCvideo: https://www.infineon.com/cms/en/product/power/motor-control-ics/brushed-dc-motor-control-ics/dc-motor-system-ics/tle9562-3qx/#!videos
- [8] Infineon, Multi Motor Evaluation Kit: https://www.infineon.com/cms/en/product/evaluation-boards/multi-motor-evalkit/

User guide

Revision history

Revision history

Document version	Date of release	Description of changes
Rev. 1.10	2024-07-04	 Document type corrected from User manual to User guide Important notice and Safety precautions added Delivery content added Block diagram added Main features added Arduino UNO controller board added Schematics and Layout updated Images updated in SBC tab page, Bridge driver tab page, and Board overview and connectors Glossary and References added
Rev. 1.00	2020-07-16	Initial document release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-07-04 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-vqk1716815579231

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com)

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.