## AM25S557, AM25S558 ## Eight-Bit by Eight-Bit Combinatorial Multiplier The AM25S557 and AM25S558 are high-speed, combinatorial, 8 x 8-bit multipliers. Both use an array of full adders to form and add partial products in a single unclocked operation, resulting in a 16-bit parallel output product. Mode control inputs $X_M$ and $Y_M$ allow the multiplier to accept either unsigned or two's complement numbers from either respective input to provide an unsigned or signed output. The mode control lines are held LOW for unsigned input words and HIGH for two's complement. ## Rochester Electronics Manufactured Components Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM. Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet. ## **Quality Overview** - ISO-9001 - AS9120 certification - Qualified Manufacturers List (QML) MIL-PRF-38535 - · Class Q Military - Class V Space Level - Qualified Suppliers List of Distributors (QSLD) - Rochester is a critical supplier to DLA and meets all industry and DLA standards. Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers. The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. ## Am25S557/Am25S558 Eight-Bit by Eight-Bit Combinatorial Multiplier #### DISTINCTIVE CHARACTERISTICS - Multiplies two 8-bit numbers 16-bit output - Combinatorial no clocks required - Full 8 x 8 multiply in 45ns typ. - Cascades to 16 x 16 in 110ns typ. - Expandable to multiples of 8 bits - MSB and MSB outputs for easy expansion - Unsigned, two's complement or mixed operands - Implements common rounding algorithms with additional logic - Three-state outputs - Transparent 16-bit latch in Am25S557 - Industry standard pin-outs #### GENERAL DESCRIPTION The Am25S557 and Am25S558 are high-speed, combinatorial, 8 x 8-bit multipliers. Both use an array of full adders to form and add partial products in a single unclocked operation, resulting in a 16-bit parallel output product. Mode control inputs $X_{\mbox{\scriptsize M}}$ and $Y_{\mbox{\scriptsize M}}$ allow the multiplier to accept either unsigned or two's complement numbers from either respective input to provide an unsigned or signed output. The mode control lines are held LOW for unsigned input words and HIGH for two's complement. The Am25S557 and Am25S558 are easily expandable to longer work lengths. Both S<sub>15</sub> and S<sub>15</sub> are available to allow expansion in either signed or unsigned modes without external inverters. In the 16-bit by 16-bit configuration (32bit output) the typical multiply time is 110ns. Both configurations offer three-state output flexibility and the Am25S557 adds a 16-bit transparent latch between the multiplier array and the three-state output buffers (including Rounding provisions for 8-bit truncated output configurations are particularly optimized for maximum flexibility. The Am25S557 internally develops proper rounding for either signed or unsigned numbers by combining rounding input R with $X_M$ , $Y_M$ , $\overline{X}_M$ and $\overline{Y}_M$ as follows: $R_U = \overline{X}_M \cdot \overline{Y}_M \cdot R = Unsigned Rounding input to 2^7 ad-$ $R_S = (X_M + Y_M) R = Signed Rounding input to 2<sup>6</sup> adder.$ Since the Am25S558 does not require the use of pin 9 for the latch enable input, (G), RS and RU are brought out separately. #### **BLOCK DIAGRAM** BD001780 \*Pin 11 is G for Am25S557 and RiJ for Am25S558. #### CONNECTION DIAGRAM **Top View** L-44-1 Pin assignments shown are for Am25S558. G and R shown in parentheses are pin assignments for Am25S557. #### METALLIZATION AND PAD LAYOUT Am25S557 #### ORDERING INFORMATION AMD products are available in several packages and operating ranges. The order number is formed by a combination of the following: Device number, speed option (if applicable), package type, operating range and screening option (if desired). | Valid Co | ombinations | |----------|------------------| | Am25S557 | DC, DM<br>LC, LM | | Am25S558 | DC, DM<br>LC, LM | #### **Valid Combinations** Consult the AMD sales office in your area to determine if a device is currently available in the combination you wish. #### PIN DESCRIPTION Pin No. 1/0 Description Name Multiplicand 8-bit data inputs. $X_0 - X_7$ Multiplier 8-bit data inputs. Y0-Y7 Mode control inputs for each data word; LOW for unsigned data and HIGH for two's complement data. X<sub>M</sub>, Y<sub>M</sub> Product 16-bit output. S<sub>0</sub> - S<sub>15</sub> 0 Inverted MSB for expansion. §<sub>15</sub> 23 Rounding inputs for signed and unsigned data, respectively (Am25S558 only). 9, 11 Rs. Ru Transparent Latch Enable (Am25S557 only). 11 G Three-state enable for So-S15 outputs. ŌĒ Rounding input for signed or unsigned data (combined internally with X<sub>M</sub>, Y<sub>M</sub> in Am25S557 only). 21 R 9 #### MODE CONTROL INPUTS | | Input | Data | Mo<br>Control | | |-------------------|----------|----------|---------------|----| | Operating<br>Mode | X0-X7 | Y0-Y7 | XM | YM | | UNSIGNED | UNSIGNED | UNSIGNED | L | L | | | UNSIGNED | 2's COMP | L | Н | | MIXED | 2's COMP | UNSIGNED | н | L | | SIGNED | 2's COMP | 2's COMP | Н | Н | #### ROUNDING INPUTS Am25S557 | | Inputs | | Ad | ds | |----|--------|---|----------------|----------------| | XM | YM | R | 2 <sup>7</sup> | 2 <sup>6</sup> | | L | L | Н | YES | NO | | L | н | Н | NO | YES | | Н | L | н | NO | YES | | Н | н | Н | NO | YES | | X | X | L | NO | NO | #### Am25S558 | Inp | uts | Ad | ds | Normally I | Jsed With | |-----|-----|----------------|----------------|--------------------|-----------| | RU | Rs | 2 <sup>7</sup> | 2 <sup>6</sup> | XM | YM | | L | L | NO | NO | Х | X | | | н | NO | YES | X <sub>M</sub> + \ | M = H | | Н | L | YES | NO | L | L | | Н | Н | YES | YES | • | • | $<sup>^{\</sup>bullet}$ Most rounding applications require a HIGH level for $R_U$ or $R_{S_{\rm r}}$ but not both. ## I/O MAPPED INTERFACE WITH MOS MICROPROCESSOR 03614B Figure 1. High-Speed 16 x 16 2's Complement Multiplication. #### ABSOLUTE MAXIMUM RATINGS | Storage Temperature65°C to Ambient Temperature Under Bias55°C to | o +150°C<br>o +125°C | |------------------------------------------------------------------|----------------------| | Supply Voltage to Ground Potential | | | Continuous0.5V | to +7.0V | | DC Voltage Applied to Outputs For | | | High Output State0.5V to 4 | V <sub>CC</sub> max | | DC Input Voltage0.5V | to +5.5V | | DC Output Current, Into Outputs | 30mA | | DC Output Current, into Capato | - + 5 0mA | | DC Input Current30mA t | 0 1 3.0111 | | | | Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. #### **OPERATING RANGES** | Commercial (C) Devices Temperature | 0°C to +70°C<br>+4.75V to +5.25V | |------------------------------------|-----------------------------------------------------------------------------------| | Supply Voltage | -55°C to +125°C<br>+4.5V to +5.5V<br>se limits over which the function-<br>nteed. | ### DC CHARACTERISTICS over operating range unless otherwise specified | Parameters | Description | Test | Conditions ( | Note 2) | | Min | Typ<br>(Note 1) | Max | Units | |-----------------|-------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|----------|-----|-----------------|-------|-------| | V <sub>OH</sub> | Output HIGH Voltage | V <sub>CC</sub> = MIN<br>V <sub>IN</sub> = V <sub>IH</sub> or<br>V <sub>IL</sub> | V <sub>IL</sub> = 0.8V<br>V <sub>IH</sub> = 2.0V | I <sub>OH</sub> = - | 2.0mA | 2.4 | 3.0 | | Volts | | Vol | Output LOW Voltage | V <sub>CC</sub> = MIN<br>V <sub>IN</sub> = V <sub>IH</sub> or<br>V <sub>IL</sub> | V <sub>IL</sub> = 0.8V<br>V <sub>IH</sub> = 2.0V<br>I <sub>OL</sub> = 8.0mA | | | | 0.3 | 0.5 | Volts | | VIH | input HIGH Level | Guaranteed ing | out logical HIGH inputs | | | 2.0 | | | Volts | | | | | out logical LOW | М | IL | | | 0.8 | Volts | | VIL | Input LOW Level | voltage for all | inputs | 0 | J'MC | | | 0.8 | | | | Input Clamp Voltage | V <sub>CC</sub> = MIN, 1 <sub>IN</sub> | | | | | | -1.5 | Volts | | V <sub>I</sub> | Input LOW Current | V <sub>CC</sub> = MAX, V | IN = 0.5V | | | | | -1.0 | mA | | liL | Input HIGH Current | V <sub>CC</sub> = MAX, V | | | | | | 100 | μΑ | | lін | Input HIGH Current | V <sub>CC</sub> = MAX, V | | | | | | 1 | mA | | li | Input High Cutterit | 100 | | V | o = 0.5V | | | -100 | | | io | Off State (High Impedance) Output Current | V <sub>CC</sub> = MAX | | v | 0 = 2.4V | | | + 100 | μА | | Isc | Output Short Circuit Current<br>(Note 3) | V <sub>CC</sub> = MAX. | | | | -20 | | -90 | mA | | Icc | Power Supply Current (Note 4) | V <sub>CC</sub> = MAX | | | | | | 280 | mA | Notes: 1. Typical limits are at V<sub>CC</sub> = 5.0V, 25°C ambient and maximum loading. 2. For conditions shown as MIN or MAX, use the appropriate value specified under Operating Ranges for the applicable device type. 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 4. Test with pin 21 at 4.5V, all other input pins at GND, all outputs open Am25S557 conditions the same except initialize with G (pin 11) at 4.5V, then GND. #### SWITCHING TEST CIRCUIT #### SWITCHING TEST WAVEFORMS | Test | V <sub>X</sub> | Output Waveform - Measurement Level | |-----------------------|----------------|-------------------------------------| | All t <sub>PD</sub> s | 5.0V | V <sub>OH</sub> 1.5V | | <sup>t</sup> PHZ | 0.0V | V <sub>OH</sub> | | t <sub>PLZ</sub> | 5.0V | V <sub>OL</sub> | | t <sub>PZH</sub> | 0.0V | 0.00 | | t <sub>PZL</sub> | 5.0V | 2.8V | WF002350 CL Includes probe and jig capacitance. #### SET-UP AND HOLD TIMES #### PULSE WIDTH Notes:1. Diagram shown for HIGH data only. Output transition may be opposite sense. 2. Cross hatched area is don't care condition. ### SWITCHING CHARACTERISTICS over operating range unless otherwise specified\* | | | | | MMERC | araeg. | | ILITAR | | | |------------------|------------------------------------------------|-----------------------------------|-----|---------|--------|-----------|--------|-----|-------| | 2 | 1 | | l A | m25\$5 | 7 | A | m25S5 | 57 | | | Parameters | Description | Test Conditions | Min | Тур | Max | Min | Тур | Max | Units | | tep | Xi, Yi to So to S7 | | | 45 | 60 | | 55 | 70 | ns | | tpD | Xi, Yi to S8 to S15 or \$15 | | | 50 | (80) | | 60 | (90 | ) ns | | ts | Xi, Yi to G Set-up Time | | 65 | | 7 23 | 75 | | | ns | | th | X <sub>i</sub> , Y <sub>i</sub> to G Hold Time | | -5 | j - 12% | | -5- | | | ns | | tpD | G to S <sub>1</sub> | C - 20=E | | 30 | 45 | | 30 | 50 | ns | | tpw | Latch Enable Pulse Width | $C_L = 30pF$<br>$R_L = 560\Omega$ | 25 | 15 | | 30 | 15 | | ns | | t <sub>PHZ</sub> | OE to So to S15 | (See test figures) | | 15 | 30 | | 15 | 40 | ns | | tpHZ | OE to \$15 | | | 25 | 40 | | 25 | 50 | ns | | tpLZ | OE to S <sub>1</sub> | | | 15 | 30 | | 15 | 40 | ns | | tpzH | OE to S <sub>1</sub> | | | 20 | 35 | | 20 | 40 | ns | | 1PZL | OE to S <sub>1</sub> | | | 20 | 35 | 84===5=M8 | 20 | 40 | ns | 03614B 9 ## SWITCHING CHARACTERISTICS over operating range unless otherwise specified\* | | | | co | MMERC | IAL | N | ILITAR | Y | | |------------------|---------------------------------------------------------------------|------------------------------------------------|-----|-------|-----|-----|--------|-----|-------| | | | | A | m25S5 | 58 | А | m25S5 | 58 | | | Parameters | Description | Test Conditions | Min | Тур | Max | Min | Тур | Max | Units | | tpD | X <sub>1</sub> , Y <sub>1</sub> to S <sub>0</sub> to S <sub>7</sub> | | | 35 | 55 | | 35 | 65 | ns | | tpD | X1, Y1 to S0 to S15 or \$15 | | | 55 | 75 | | 55 | 85 | ns | | | OE to So to S15 | | | 15 | 30 | | 15 | 40 | ns | | t <sub>PHZ</sub> | OE to \$15 | C <sub>L</sub> = 30pF<br>R <sub>L</sub> = 580Ω | | 25 | 40 | | 25 | 50 | ns | | tPHZ | | (See test figures) | | 15 | 30 | | 15 | 40 | ns | | tPLZ | OE to S <sub>1</sub> | _ | | 20 | 35 | | 20 | 40 | ns | | tpzH | OE to S <sub>1</sub> | | - | - | 35 | _ | 20 | 40 | ns | | tozi | OE to S <sub>1</sub> | | | 20 | 35 | | 20 | 40 | 110 | tPZL OE to S1 \*AC performance over the operating temperature range is guaranteed by testing defined in Group A, Subgroup 9. # Am25S557/Am25S558 INPUT/OUTPUT CURRENT INTERFACE CONDITIONS ### RELATED PRODUCTS | Part No. | Description | | | | |-----------|----------------------------------|--|--|--| | Am29516/7 | 16 by 16-Bit Multiplier | | | | | Am25S05 | 4 by 2-Bit Multiplier | | | | | Am25LS14A | 8-Bit Serial/Parallel Multiplier | | | |