

PART NUMBER 27S13PC-ROCS

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

AM27S13, AM27S13A

2.048-Bit (512x4) Bipolar RAM

The AM27S13 (512 words by 4 bits) is a Schottky TTL Programmable Read-Only Memory (PROM).

This device has three-state (AM27S13) outputs which are compatible with low-power Schottky bus standards capable of satisfying the requirements of a variety of microprogrammable controls, mapping, functions, code conversion, or logic replacement. Easy word-depth expansion is facilitated by an active LOW output enable (\overline{G}) .

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

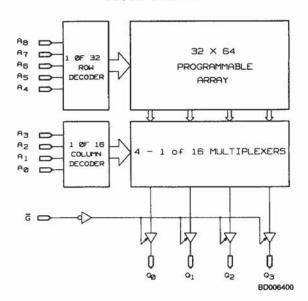
Am27S13/27S13A

2,048-Bit (512x4) Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- · High speed
- Highly reliable, ultra-fast programming Platinum-Silicide fuses
- · High programming yield

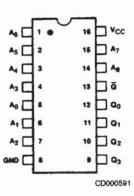
- Low-current PNP inputs
- High-current open-collector and three-state outputs
- · Fast chip select

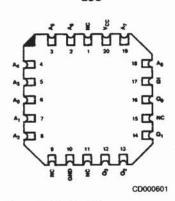

GENERAL DESCRIPTION

The Am27S13 (512 words by 4 bits) is a Schottky TTL Programmable Read-Only Memory (PROM).

This device has three-state (Am27S13) outputs which are compatible with low-power Schottky bus standards capable

of satisfying the requirements of a variety of microprogrammable controls, mapping functions, code conversion, or logic replacement. Easy word-depth expansion is facilitated by an active LOW output enable $(\overline{\textbf{G}})$.


BLOCK DIAGRAM


PRODUCT SELECTOR GUIDE

Three-State Part Number	Am27	7S13A	Am27S13			
Address Access Time	30 ns	40 ns	50 ns	60 ns		
Operating Range	С	М	С	м		

Publication € Rev. Amendment 03208 D /0 Issue Date: Jenuary 1989

DIPs*



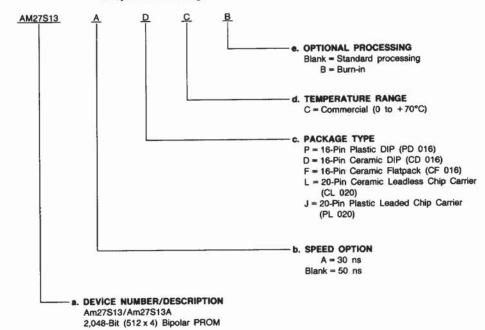
*Also available in 16-Pin Flatpacks; Pinout identical to DIPs.

**Also available in 20-Pin PLCC; Pinout identical to LCC.

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

5


ORDERING INFORMATION

Standard Products

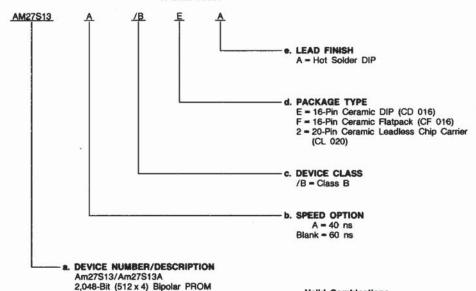
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Device Number

- b. Speed Option (if applicable)

- c. Package Type d. Temperature Range e. Optional Processing

Valid Combinations						
AM27S13	DC, DCB, PC, PCB, LC, LCB, FC, FCB,					
AM27S13A	JC, JCB					

Valid Combinations


Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number b. Speed Option (if applicable)

- c. Device Class
- d. Package Type e. Lead Finish

Valid C	Combinations
AM27S13	/DEA /DEA /DOA
AM27S13A	/BEA, /BFA, /B2A

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

MILITARY BURN-IN

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Method 1015, Conditions A through E. Test conditions are selected at AMD's option.

PIN DESCRIPTION

A₀-A₈ Address Inputs

The 9-bit field presented at the address inputs selects one of 512 memory locations to be read from.

Q₀-Q₃ Data Output Port

The outputs whose state represents the data read from the selected memory locations.

Output Enable

Provides direct control of the Q output three-state buffers. Outputs disabled force all open-collector outputs to an OFF state and all three-state outputs to a floating or highimpedance state.

Enable = G

Disable = G

V_{CC} Device Power Supply Pin

The most positive of the logic power supply pins.

GND Device Power Supply Pin

The most negative of the logic power supply pins.

FUNCTIONAL DESCRIPTION

Applying the Am27S13

The Am27S13 can be used with a high-speed counter to form a pico-controller for microprogrammed systems. A typical application is illustrated below wherein a multiplexer, under control of one of the PROMs, is continuously sensing the

CONDITIONAL TEST INPUTS. When the selected condition occurs, a HIGH signal will result at the multiplexer output, causing a predetermined branch address to be loaded into the parallel inputs of the counters on the next clock pulse. The counter then accesses the preprogrammed data or control information sequence from the Am27S12 or Am27S13 PROMs.

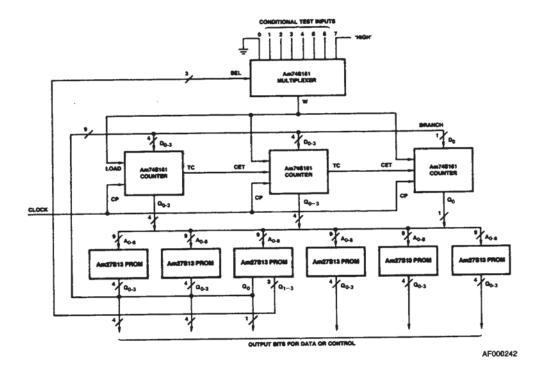


Figure 1. Typical Application for Am27S13

ABSOLUTE MAXIMUM RATINGS

Storage Temperature 65	to +150°C
Ambient Temperature with	
Power Applied 55	to +125°C
Supply Voltage 0.5 V	
DC Voltage Applied to Outputs	
(Except During Programming) 0.5 V to -	+ VCC Max.
DC Voltage Applied to Outputs	
During Programming	21 V
Output Current into Outputs During	
Programming (Max. Duration of 1 sec)	250 mA
DC Input Voltage 0.5 V	to +5.5 V
DC Input Current30 mA	to +5 mA

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
Ambient Temperature (TA)	0 to +75°C
Supply Voltage (VCC)	+ 4.75 V to + 5.25 V
Military (M) Devices*	
Case Temperature (T _C)	55 to + 125°C
Supply Voltage (VCC)	+4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

*Military Product 100% tested at T_C = +25°C, +125°C, and -55°C.

DC CHARACTERISTICS over operating range unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions			Min.	Тур.	Max.	Unit
V _{OH} (Note 1)	Output HIGH Voltage	VCC = Min., IOH = VIN = VIH or VIL	2.4			٧		
VOL	Output LOW Voltage	V _{CC} = Min., I _{OL} = V _{IN} = V _{IH} or V _{IL}			0.45	٧		
VIH	Input HIGH Level	Guaranteed input voltage for all inp	2.0			٧		
VIL	Input LOW Level	Guaranteed input voltage for all inp			8.0	٧		
l _I L	Input LOW Current	VCC = Max., VIN			-0.250	mA		
lін	Input HIGH Current	V _{CC} = Max., V _{IN}	19		25	μΑ		
ISC (Note 1)	Output Short-Circuit Current	V _{CC} = Max., V _{OUT} = 0.0 V (Note 3)			-20		-90	mA
loc	Power Supply Current	All inputs = GND V _{CC} = Max.					130	mA
VI	Input Clamp Voltage	V _{CC} = Min., I _{IN} = -18 mA				-1.2	Volts	
***	Output Leakage Current	Vcc = Max.		Vo = Voc	300		40	μА
				VO = 0.4 V			-40	μΛ
CIN	Input Capacitance	Vcc = 5.00 V.,TA = 25°C				4		pF
COUT	Output Capacitance	V _{IN} /V _{OUT} = 2.0 V. @ I = 1 MHz (Note 4)			8	Serie Serie	P	

- Notes: 1. This applies to three-state devices only.

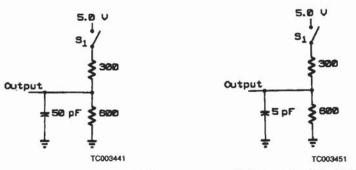
 2. V_{IL} and V_{IH} are input conditions of output tests and are not themselves directly tested. V_{IL} and V_{IH} are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

 3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.

 4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted*)

No.	Parameter Symbol		"A" Version			Standard Version					
			COM'L		MIL		COM'L		MIL		
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
1	TAVQV	Address Valid to Output Valid Access Time		30		40		50		60	ns
2	TGVQZ	Delay from Output Enable Valid to Output Hi-Z		20		25		25		30	ns
3	TGVQV	Delay from Output Enable Valid to Output Valid		20		25		25		30	ns

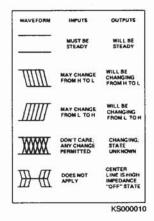

See also Switching Test Circuits.

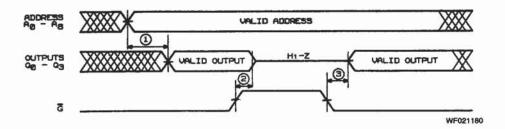
Notes: 1. Tests are performed with input transition time of 5 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V using test load in A under Switching Test Circuits.

2. TGVQZ is measured at steady state HIGH output voltage -0.5 V and steady state LOW output voltage +0.5 V ouput levels using the test load in B under Switching Test Circuits.

^{*}Subgroups 7 and 8 apply to functional tests.

SWITCHING TEST CIRCUITS


A. Output Load for all tests except TGVQZ


B. Output Load for TGVQZ

- Notes: 1. All device test loads should be located within 2" of device output pin.
 - 2. S_1 is open for Output Data HIGH to Hi-Z and Hi-Z to Output Data HIGH tests. S_1 is closed for all other AC tests.
 - 3. Load capacitance includes all stray and fixture capacitance.

SWITCHING WAVEFORMS

KEY TO SWITCHING WAVEFORM

