

PART NUMBER 5493ADM-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

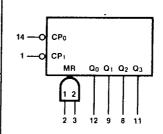
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

T-45.23-13

54/7493A 54LS/74LS93

DIVIDE-BY-SIXTEEN COUNTER

CP₁ 1 14 CPo 13 NC MR₂ 3 12 Q₀ NC 4 11 Q3 Vcc 5 10 GND NC 6 9 Q; NC 7 8 Q2


CONNECTION DIAGRAM PINOUT A

DESCRIPTION — The '93 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divideby-eight. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

ORDERING CODE: See Section 9

	u 000	E. OCC OCCION 5		
	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	OUT	$V_{CC} = +5.0 \text{ V} \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ} \text{ C} \text{ to } +125^{\circ} \text{ C}$	TYPE
Plastic DIP (P)	А	7493APC, 74LS93PC		9A
Ceramic DIP (D)	А	7493ADC, 74LS93DC	5493ADM, 54LS93DM	6A
Flatpak (F)	Α	7493AFC, 74LS93FC	5493AFM, 54LS93FM	31

LOGIC SYMBOL

Vcc = Pin 5 GND = Pin 10 NC = Pins 4, 6, 7, 13

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW
CP ₀	÷2 Section Clock Input (Active Falling Edge)	2.0/2.0	1,0/1.5
ĈP₁	÷5 Section Clock Input (Active Falling Edge)	2.0/2.0	1.0/1.0
MR ₁ , MR ₂	Asynchronous Master Reset Inputs (Active HIGH)	1.0/1.0	0.5/0.25
Q_0	÷2 Section Output*	20/10	10/5.0 (2.5)
Q ₁ — Q ₃	÷8 Section Outputs	20/10	10/5.0 (2.5)

*The Q0 output is guaranteed to drive the full rated fan-out plus the $\overline{\text{CP}}_1$ input.

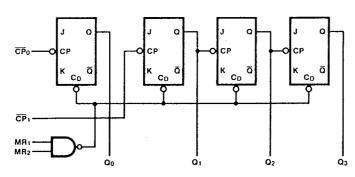
93

FUNCTIONAL DESCRIPTION — The '93 is a 4-bit ripple type binary counter. It consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-eight section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q₀ output of each device is designed and specified to drive the rated fan-out plus the $\overline{CP_1}$ input of the device. A gated AND asynchronous Master Reset (MR $_1$, MR $_2$) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

- A. 4-Bit Ripple Counter The output Q_0 must be externally connected to input \overline{CP}_1 . The input count pulses are applied to input $\overline{CP_0}$. Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q₀, Q₁, Q₂, and Q₃ outputs as shown in the Truth Table.
- B. 3-Bit Ripple Counter The input count pulses are applied to input $\overline{\mathbb{CP}}_1$. Simultaneous frequency divisions of 2, 4, and 8 are available at the Q1, Q2, and Q3 outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

MODE SELECTION

	SET		OUT	rput	S
MR ₁	MR ₂	Q ₀	Qı	Q ₂	Q ₃
H	H H L	L	Co	L unt unt unt	L


H = HIGH Voltage Level L = LOW Voltage Level

TRUTH TABLE

7710711 77222							
COUNT	OUTPUTS						
COOM	Q ₀	Q ₁	Q ₂	Q ₃			
0	L	L	L	L			
1	Н	L	Ł	L			
2	L	Н	L	L			
3	Н	Н	L	L			
4	L	L	Н	L			
5	Н	L	Н	L			
6	L	Н	Н	L			
7	Н	Н	Н	L			
8	L	L	L	Н			
9	Н	L	L	Н			
10	L	Н	L	Н			
11	Н	Н	L	Н			
12	L	L.	Н	Н			
13	Н	L	Н	н			
14	L	Н	Н	H			
15	Н	Н	Н	Н			

NOTE: Output Qo connected to CP1.

LOGIC DIAGRAM

E-14 1153

4-121 A -- -- 05493-2×

T-45-23-13

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
		Min	Max	Min	Max		
hн	Input HIGH Current CP ₀ or CP ₁		1.0		0.2	mA	V _{CC} = Max, V _{IN} = 5.5 V
lcc	Power Supply Current		39		15	mA	Vcc = Max

AC CHARACTERISTICS: Vcc = +5.0 V. Ta = +25°C (See Section 3 for waveforms and load configurations)

SYMBOL		54/74	54/74LS		CONDITIONS
	PARAMETER	C _L = 15 pF R _L = 400 Ω	C _L = 15 pF	UNITS	
		Min Max	Min Max		
f _{max}	Maximum Count Frequency CP ₀ Input	32	32	MHz	Figs. 3-1; 3-9
f _{max}	Maximum Count Frequency CP ₁ Input	16	16	MHz	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₀ to Q ₀	16 18	16 18	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₀ to Q ₃	70 70	70 70	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₁ to Q ₁	16 21	16 21	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP 1 to Q ₂	32 35	32 35	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP ₁ to Q ₃	51 51	51 51	ns	Figs. 3-1, 3-9
tpHL	Propagation Delay MR to Q _n	40	40	ns	Figs, 3-1, 3-17

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
	TAILAINET EIT	Min	Max	Min	Max	00	
t _w (H)	CP₀ Pulse Width HIGH	15		15		ns	Fig. 3-9
tw (H)	CP ₁ Pulse Width HIGH	30		30		ns	Fig. 3-9
tw (H)	MR Pulse Width HIGH	15		15		ns	Fig. 3-17
trec	Recovery Time, MR to CP	25		25		ns	Fig. 3-17