

PART NUMBER 54ALS808AFKB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

54ALS808

Hex 2-Input AND Drivers

These devices contain six independent 2-input AND drivers. They perform the Boolean functions $Y = A \cdot B$ or $Y = \overline{A} + \overline{B}$ in positive logic.

The SN54ALS808A and SN54AS808B are characterized for operation over the full military temperature range of -55°C to 125°C.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

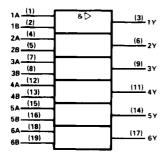
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN54ALS808A, SN54AS808B, SN74ALS808A, SN74AS808B HEX 2-INPUT AND DRIVERS

D2661, DECEMBER 1982 - REVISED MAY 1986

- High Capacitive Drive Capability
- 'ALS808A has Typical Delay Time of 4.8 ns (C_L = 50 pF) and Typical Power Dissipation of 4.5 mW per Gate
- 'AS808B has Typical Delay Time of 3.2 ns (C_L = 50 pF) and Typical Power Dissipation of Less than 13 mW per Gate
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

description


These devices contain six independent 2-input AND drivers. They perform the Boolean functions $Y = A \cdot B$ or $Y = \overline{A} + \overline{B}$ in positive logic.

The SN54ALS808A and SN54AS808B are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS808A and SN74AS808B are characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each driver)

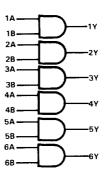
INP	UTS	OUTPUT
Α	В	Υ
н	Н	Н
L	X	L
Х	Ļ	L

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

PRODUCTION DATA documents contain information

current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


SN54ALS808A, SN54AS808B . . . J PACKAGE SN74ALS808A, SN74AS808B . . . DW OR N PACKAGE (TOP VIEW)

SN54ALS808A, SN54AS808B . . . FK PACKAGE (TOP VIEW)

logic diagram (positive logic)

recommended operating conditions

		SN	SN54ALS808A		SN74ALS808A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	ON
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2	_		2			V
VIL	Low-level input voltage			0.7			0.8	V
Іон	High-level output current			- 12			15	mA
OL	Low-level output current			12			24	mA
TA	Operating free-air temperature	- 55		125	0	_	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDI	TIONS	SN	54ALS8	A80	SN	74ALS	A808	UNIT	
FARAMETER	TEST CONDI	IIONS	MiN	TYP [†]	MAX	MIN	TYP	MAX	5,411	
ViK	V _{CC} = 4.5 V,	I _I = -18 mA			- 1.2			- 1.2	V	
	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	IOH = -0.4 mA	V _{CC} -2			V _{CC} -2				
	$V_{CC} = 4.5 V$	IOH = -3 mA	2.4	3.2		2.4	3.2]	
∨он	V _{CC} = 4.5 V,	I _{OH} = -12 mA	2						7 V	
	$V_{CC} = 4.5 \text{ V},$	lOL = -15 mA				2			1	
VOL	V _{CC} = 4.5 V,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	v	
L	$V_{CC} = 4.5 \text{ V},$	$l_{OL} = 24 \text{ mA}$					0.35	0.5] `	
Ŋ	$V_{CC} = 5.5 \text{ V},$	V _j = 7 V			0.1			0.1	mA	
lH	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20			20	μA	
1 _{IL}	$V_{CC} = 5.5 V$,	V _I = 0.4 V			-0.1			- 0.1	mA	
10 [‡]	V _{CC} = 5.5 V,	V _O = 2.25 V	- 30		- 112	- 30		-112	mA	
Іссн	V _{CC} ≈ 5.5 V,	V ₁ = 4.5 V		4.5	7		4.5	7	mA	
JCCL	V _{CC} = 5.5 V,	V ₁ = 0 V		8	16		8	16	mA	

 $^{^{\}dagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25 ^{\circ}\text{C}$

switching characteristics (see note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 5 \text{ V},$ $C_{L} = 50 \text{ pF},$ $R_{L} = 500 \Omega,$ $T_{A} = 25 ^{\circ}\text{C}$	C R T	CC = 4.5 L = 50 pF $L = 500 \Omega$ A = MIN to	o MAX		UNIT
			ALS808A	MIN	LS808A MAX	MIN	LS808A MAX	-
^t PLH	A or B	Υ Υ	6	2	11	2	9	ns
t _{PHL}		_ 	4	1	10	1	8] '''

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

[‡]The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VCC..... SN74AS808B 0 °C to 70 °C

recommended operating conditions

		SI	SN54AS808B		SN74AS808B			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			8.0	V
ГОН	High-level output current			- 40			- 48	mA
lor	Low-level output current	·		40			48	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			SN	154AS8	08B	SN	174AS8	08B	
	TEST CONDI	IIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
VIK	V _{CC} = 4.5 V.	I _j = -18 mA			- 1.2			- 1.2	V
	V _{CC} = 4.5 V to 5.5 V,	IOH = -2 mA	V _{CC} - 2			V _{CC} - 2	_		
	V _{CC} - 4.5 V,	IOH = -3 mA	2.4	3.2		2.4	3.2]
Val	V _{CC} = 4.5 V,	I _{OH} = -40 mA	2]
∨он	V _{CC} = 4.5 V,	IOH = -48 mA				2			7 °
Va	V _{CC} - 4.5 V,	IOL - 40 mA		0.25	0.5				V
VoL	V _{CC} = 4.5 V,	I _{OL} = 48 mA					0.35	0.5	1 °
ħ	V _{CC} = 5.5 V,	V - 7 V			0.1			0.1	mA
¹ H	V _{CC} 5.5 V,	V 2.7 V			20			20	μΑ
I _{IL}	V _{CC} 5.5 V,	V _I 0.4 V			- 0.5			- 0.5	mΑ
10‡	V _{CC} 5.5 V,	V ₀ = 2.25 V	- 50		- 200	- 50		200	mA
Іссн	V _{CC} - 5.5 V,	V _I = 4.5 V		8	13		8	13	mA
CCL	V _{CC} - 5.5 V,	V ₁ - 0 V		20	33		20	33	mA

[†]All typical values are at V_{CC} = 5 V, T_A = 25 °C

switching characteristics (see note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)				UNIT	
			SN54	AS808B	SN74/	4S808B	
			MIN	MAX	MIN	MAX	
^t PLH	A or B	V	1	6.5	11	6	ns
[†] PHL	4 0/ 5		1	6.5	1	6	115

NOTE 1: Load circuit and voltage waveforms are shown in Section 1.

^{*}The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.