

# PART NUMBER 54HC160BEA-ROCV

# Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

# **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
  - Class Q Military
  - Class V Space Level

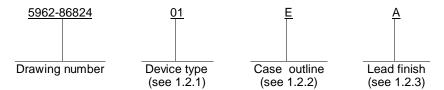
Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

| REVISIONS |                                                                                                                                                 |                 |                 |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|--|--|--|--|
| LTR       | DESCRIPTION                                                                                                                                     | DATE (YR-MO-DA) | APPROVED        |  |  |  |  |
| А         | Add vendor CAGE 27014 to case outline 2. Add Clear input to truth table. Editorial changes throughout. Add vendor CAGE 01295 to case outline F. | 87-04-10        | Nelson A. Hauck |  |  |  |  |
| В         | Correct the title. Correct the conditions for $V_{OH}$ and $V_{OL}$ tests in table I. Editorial changes throughout jak                          | 12-02-02        | Thomas M. Hess  |  |  |  |  |
| С         | Update boilerplate paragraphs to the current MIL-PRF-38535 requirements LTG                                                                     | 19-04-30        | Thomas M. Hess  |  |  |  |  |


## **CURRENT CAGE CODE 67268**



| 1                                                          |                                   |   |   |               |                                                                           |    |       |       |    |        |     |       |       |     |  |
|------------------------------------------------------------|-----------------------------------|---|---|---------------|---------------------------------------------------------------------------|----|-------|-------|----|--------|-----|-------|-------|-----|--|
| REV                                                        |                                   |   |   |               |                                                                           |    |       |       |    |        |     |       |       |     |  |
| SHEET                                                      |                                   |   |   |               |                                                                           |    |       |       |    |        |     |       |       |     |  |
| REV                                                        |                                   |   |   |               |                                                                           |    |       |       |    |        |     |       |       |     |  |
| SHEET                                                      |                                   |   |   |               |                                                                           |    |       |       |    |        |     |       |       |     |  |
| REV STATUS                                                 | REV                               | С | С | С             | С                                                                         | С  | С     | С     | С  | С      | С   | С     | С     |     |  |
| OF SHEETS                                                  | SHEET                             | 1 | 2 | 3             | 4                                                                         | 5  | 6     | 7     | 8  | 9      | 10  | 11    | 12    |     |  |
| PMIC N/A PREPARED BY  Jeffery Tunstall                     |                                   |   |   |               |                                                                           |    |       |       |    | RITIMI |     |       |       |     |  |
| STANDARD<br>MICROCIRCUIT                                   |                                   |   |   |               | MICROCIRCUIT, DIGITAL, HIGH SPEED CMOS, 4-BIT SYNCHRONOUS DECADE COUNTER, |    |       |       |    |        |     |       |       |     |  |
| DRAWING                                                    |                                   |   |   |               |                                                                           |    |       |       |    |        |     |       |       |     |  |
| THIS DRAWING IS AVAILABLE<br>FOR USE BY ALL<br>DEPARTMENTS | DRAWING APPROVAL DATE<br>86-09-29 |   |   |               |                                                                           |    | ITHIC |       |    |        | ADE | : 000 | JINIE | īK, |  |
| AND AGENCIES OF THE DEPARTMENT OF DEFENSE                  | REVISION LEVEL                    | - |   |               | SI                                                                        | ZE | CA    | GE CO | DE |        |     |       |       |     |  |
|                                                            |                                   | С |   |               | A                                                                         | 4  |       | 14933 | 3  |        | 5   | 5962- | 8682  | 4   |  |
| AMSC N/A                                                   |                                   |   |   | SHEET 1 OF 12 |                                                                           |    |       |       |    |        |     |       |       |     |  |

#### 1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.
  - 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:



1.2.1 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

| Device type | Generic number | Circuit function                 |
|-------------|----------------|----------------------------------|
| 01          | 54HC160        | 4-Bit synchronous decade counter |

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

| Outline letter | Descriptive designator                           | <u>Terminals</u> | Package style                |
|----------------|--------------------------------------------------|------------------|------------------------------|
| E<br>F         | GDIP1-T16 or CDIP2-T16<br>GDFP2-F16 or CDFP3-F16 | 16<br>16         | Dual-in-line<br>Flat pack    |
| . 2            | CQCC1-N20                                        | 20               | Square leadless chip carrier |

- 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.
- 1.3 Absolute maximum ratings. 1/ 2/

| Supply voltage range (Vcc)                              | 0.5 V dc to +7.0 V dc                 |
|---------------------------------------------------------|---------------------------------------|
| DC input voltage range (V <sub>IN</sub> )               |                                       |
| DC output voltage range (Vout)                          | 0.5 V dc to V <sub>CC</sub> +0.5 V dc |
| Input clamp current (IIK)                               | ±20 mA                                |
| Output clamp current (Iok)                              | ±20 mA                                |
| DC output current (per pin)                             | ±25 mA                                |
| DC Vcc or GND current (per pin)                         | ±50 mA                                |
| Storage temperature range (T <sub>STG</sub> )           | 65°C to +150°C                        |
| Maximum power dissipation (PD):                         | 500 mW <u>3</u> /                     |
| Lead temperature (soldering, 10 seconds)                | +260°C                                |
| Thermal resistance, junction-to-case (θ <sub>JC</sub> ) | See MIL-STD-1835                      |
| Junction temperature (TJ)                               | +175°C                                |
|                                                         |                                       |

1.4 Recommended operating conditions. 2/

| Supply voltage range (Vcc)                                  | +2.0 V dc to +6.0 V dc |
|-------------------------------------------------------------|------------------------|
| Case operating temperature range (Tc)                       | 55°C to +125°C         |
| Input rise or fall time (t <sub>r</sub> , t <sub>f</sub> ): |                        |
| Vcc = 2.0 V                                                 | 0 to 1000 ns           |
| Vcc = 4.5 V                                                 | 0 to 500 ns            |
| Vcc = 6.0 V                                                 | 0 to 400 ns            |

- 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
- 2/ Unless otherwise specified, all voltages are referenced to GND.
- 3/ For  $T_C = +100$ °C to +125°C, derate linearly at 12 mW/°C.

| STANDARD<br>MICROCIRCUIT DRAWING                   | SIZE<br><b>A</b> |                     | 5962-86824 |
|----------------------------------------------------|------------------|---------------------|------------|
| DLA LAND AND MARITIME<br>COLUMBUS, OHIO 43218-3990 |                  | REVISION LEVEL<br>C | SHEET 2    |

#### 2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

#### DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

#### DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

#### DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at https://quicksearch.dla.mil).

2.2 <u>Non-Government publications</u>. The following document(s) form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents cited in the solicitation or contract.

JEDEC - SOLID STATE TECHNOLOGY ASSOCIATION (JEDEC)

JESD7 - Standard for Description of 54/74HCXXXXX and 54/74HCTXXXXX Advanced High-Speed CMOS Devices.

(Copies of these documents are available online at <a href="http://www.jedec.org">http://www.jedec.org</a> or from JEDEC – Solid State Technology Association, 3103 North 10th Street, Suite 240-S Arlington, VA 22201-2107).

2.3 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

#### 3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.
  - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
  - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
  - 3.2.3 Truth table. The truth table shall be as specified on figure 2.

| STANDARD<br>MICROCIRCUIT DRAWING                   | SIZE<br><b>A</b> |                     | 5962-86824 |
|----------------------------------------------------|------------------|---------------------|------------|
| DLA LAND AND MARITIME<br>COLUMBUS, OHIO 43218-3990 |                  | REVISION LEVEL<br>C | SHEET 3    |

- 3.2.4 Logic diagram. The logic diagram shall be as specified on figure 3.
- 3.2.5 Switching waveforms. The switching waveforms and test circuit shall be as specified in figure 4.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.
- 3.5.1 <u>Certification/compliance mark.</u> A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DLA Land and Maritime -VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change</u>. Notification of change to DLA Land and Maritime -VA shall be required for any change that affects this drawing.
- 3.9 <u>Verification and review</u>. DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

| STANDARD<br>MICROCIRCUIT DRAWING                   | SIZE<br><b>A</b> |                     | 5962-86824 |
|----------------------------------------------------|------------------|---------------------|------------|
| DLA LAND AND MARITIME<br>COLUMBUS, OHIO 43218-3990 |                  | REVISION LEVEL<br>C | SHEET 4    |

| IoH = -20 μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |            | TABLE I. Electrical performa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ance characteristics.                                |           |        |       |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|--------|-------|------|
| High level output voltage   Voi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test                     | Symbol     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |           | Limits |       | Unit |
| voltage         Ion = -20 μA         Voc = 4.5 V Voc = 6.0 V         4.4 Voc = 6.0 V           VN = Vih or Vil. Ioh = -4.0 mA         Voc = 4.5 V         1, 2, 3         3.70           VN = Vih or Vil. Ioh = -5.2 mA         Voc = 6.0 V         1, 2, 3         5.20           Low level output voltage         Vol. Vin = Vih or Vil. Ioh = -5.2 mA         Voc = 4.5 V         0.1         Vol. Vin = Vih or Vil. Ioh = -4.0 mA           Ioh = -4.0 mA         Vol. Vin = Vih or Vil. Ioh = +4.0 mA         Voc = 4.5 V         1, 2, 3         0.4         0.1           Vin = Vih or Vil. Ioh = +5.2 mA         Voc = 6.0 V         1, 2, 3         0.4         0.4         0.1           Vin = Vih or Vil. Ioh = +5.2 mA         Voc = 4.5 V         1, 2, 3         0.4         0.4           Vin = Vih or Vil. Ioh = +5.2 mA         Voc = 6.0 V         1, 2, 3         0.4         0.4           Vin = Vih or Vil. Ioh = +5.2 mA         Voc = 6.0 V         1, 2, 3         0.4         0.4           Low level input voltage         Vil. 2/2         Voc = 6.0 V         1, 2, 3         0.4         0.9           Imput capacitance         Vil. 2/2         Voc = 6.0 V         4         10.0         pF           Quiescent supply         Ioc Vil. 2/2         Voc = 6.0 V         1, 2, 3         160.0 <td< td=""><td></td><td></td><td></td><td></td><td>subgroups</td><td>Min</td><td>Max</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | subgroups | Min    | Max   |      |
| Voc = 6.0 V   Voc = 6.0 V   Voc = 6.0 V   Voc = 4.5 V   Voc = 6.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High level output        | Vон        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                    | 1, 2, 3   | 1.9    |       | V    |
| Vin = Vin or Vil   Ioh = -4.0 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | voltage                  |            | Іон = -20 μΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $V_{CC} = 4.5 \text{ V}$                             | 1         | 4.4    |       |      |
| OH = -4.0 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 6.0 V                                          | <u></u>   | 5.9    |       |      |
| Low level output voltage   Vot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 4.5 V                                          | 1, 2, 3   | 3.70   |       |      |
| $ \text{voltage } \\ \text{Voltage } \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 6.0 V                                          | 1, 2, 3   | 5.20   |       |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Low level output         | Vol        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 2.0 V                                          | 1, 2, 3   |        |       | V    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | voltage                  |            | $I_{OL} = +20 \mu A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |           |        | 0.1   |      |
| Io. = +4.0 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 6.0 V                                          |           |        | 0.1   |      |
| Injury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 4.5 V                                          | 1, 2, 3   |        | 0.4   |      |
| Voc = 4.5 V   Voc = 6.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 6.0 V                                          | 1, 2, 3   |        | 0.4   |      |
| Voc = 6.0 V   Voc = 6.0 V   Voc = 6.0 V   Voc = 2.0 V   Voc = 4.5 V   Voc = 4.5 V   Voc = 6.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High level input         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 2.0 V                                          | 1, 2, 3   | 1.5    |       | V    |
| Low level input voltage   V <sub>IL 2</sub>   V <sub>IC = 4.5 V   V<sub>CC = 6.0 V</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub> | voltage                  | <u>2</u> / |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{CC} = 4.5 \text{ V}$                             |           | 3.15   |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |           | 4.2    |       |      |
| Input capacitance   Cin   Vin = 0.0 V   Tc = +25°C   See 4.4.1c   Cin   Vin = Vcc or GND   Vin = Vcc or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Low level input voltage  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 2.0 V                                          | 1, 2, 3   |        | 0.3   | V    |
| Input capacitance $C_{IN}$ $V_{IN} = 0.0 \text{ V}$ $T_{C} = +25^{\circ}C$ $See 4.4.1c$ $V_{IN} = V_{CC}$ or $G_{ND}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{IN} = V_{CC}$ or $G_{ND}$ $V_{CC} = 6.0 \text{ V}$ $V_{IN} = V_{CC}$ or $G_{ND}$ $V_{CC} = 6.0 \text{ V}$ $V_{IN} = V_{CC}$ or $G_{ND}$ $V_{CC} = 6.0 \text{ V}$ $V_{IN} = V_{CC}$ or $G_{ND}$ $V_{CC} = 6.0 \text{ V}$ $V_{IN} = V_{CC}$ or $G_{ND}$ $V_{CC} = 0.0 \text{ V}$ $V_{IN} = V_{CC}$ or $G_{ND}$ $V_{CC} = 0.0 \text{ V}$ $V_{IN} = V_{CC}$ or $G_{ND}$ $V_{CC} = 0.0 \text{ V}$ $V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | <u>2</u> / |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{CC} = 4.5 V$                                     |           |        | 0.9   |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 6.0 V                                          |           |        | 1.2   |      |
| Quiescent supply current         Icc         Vin = Vcc or GND Vcc = 6.0 V         1, 2, 3         160.0         μA           Input leakage current         In         Vcc = 6.0 V Vin = Vcc or GND         1, 2, 3         ±1.0         μA           Functional tests         See 4.4.1b         7         7         7         7           Propagation delay time, CLOCK to Q         Tc = +25°C CL = 50 pF ±10% See figure 4         Vcc = 2.0 VVL = 4.5 V See figure 4         9         205 ns         ns           Tc = -55°C, +125°C CL = 50 pF ±10% See figure 4         Vcc = 4.5 VVL = 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Input capacitance        | Cin        | T <sub>C</sub> = +25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      | 4         |        | 10.0  | pF   |
| Input leakage current $I_{NN} = V_{CC} = 6.0 \text{ V}$ $V_{NN} = V_{CC} \text{ or GND}$ $V_{NN} = V_{NN}  o$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quiescent supply current | lcc        | V <sub>IN</sub> = V <sub>CC</sub> or GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | 1, 2, 3   |        | 160.0 | μА   |
| Propagation delay time, CLOCK to Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Input leakage current    | lin        | Vcc = 6.0 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      | 1, 2, 3   |        | ±1.0  | μА   |
| CLOCK to Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Functional tests         |            | See 4.4.1b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | 7         |        |       |      |
| See figure 4 $\frac{3}{\sqrt{2}}$ See figure 5 $\frac{3}{\sqrt{2}}$ See figure 6 $\frac{3}{\sqrt{2}}$ See figure 7 $\frac{3}{\sqrt{2}}$ See figure 8 $\frac{3}{\sqrt{2}}$ See figure 9 $\frac{3}{\sqrt{2}}$ See figure 9 $\frac{3}{\sqrt{2}}$ See figure 9 $\frac{3}{\sqrt{2}}$ See figure 9 $3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Propagation delay time,  | tpHL1,     | T <sub>C</sub> = +25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Vcc = 2.0 V                                          | 9         |        | 205   | ns   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLOCK to Q               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vcc = 4.5 V                                          | 1         |        | 41    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | <u>3</u> / | See figure 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vcc = 6.0 V                                          | 1         |        | 35    |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |            | Tc = -55°C, +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | 10, 11    |        |       | ns   |
| See figure 4   Vcc = $6.0 \text{ V}$   53     Propagation delay time, RESET to Q   Tc = $+25^{\circ}$ C   Vcc = $2.0 \text{ V}$   9   225   ns     Vcc = $4.5 \text{ V}$   Vcc = $4.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | <b>†</b>  |        |       |      |
| Propagation delay time, RESET to Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |            | See figure 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      | 1         |        |       |      |
| RESET to Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Propagation delay time.  | tpHI 2     | Tc = +25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | 9         |        | 1     | ns   |
| See figure 4 $V_{CC} = 6.0 \text{ V}$ 38 $T_C = -55^{\circ}C, +125^{\circ}C$ $V_{CC} = 2.0 \text{ V}$ 10, 11     340     ns $C_L = 50 \text{ pF} \pm 10\%$ $V_{CC} = 4.5 \text{ V}$ 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | 1         |        |       |      |
| $T_{C} = -55^{\circ}C, +125^{\circ}C$ $V_{CC} = 2.0 \text{ V}$ 10, 11 340 ns $V_{CC} = 50 \text{ pF} \pm 10\%$ $V_{CC} = 4.5 \text{ V}$ 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |           |        | +     |      |
| $C_L = 50 \text{ pF} \pm 10\%$ $V_{CC} = 4.5 \text{ V}$ 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |            | Tc = -55°C +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      | 10 11     |        |       | ns   |
| See figure 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |            | The state of the s |                                                      | 10, 11    |        |       | 110  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{CC} = 4.5 \text{ V}$<br>$V_{CC} = 6.0 \text{ V}$ | 1         |        | 58    |      |

See footnotes at end of table.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br><b>A</b> |                | 5962-86824 |
|----------------------------------|------------------|----------------|------------|
| DLA LAND AND MARITIME            |                  | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43218-3990        |                  | C              | 5          |

|                                                         | TABLE               | I. Electrical performance ch                                                        | naracteristics - Contin  | ued.      |        |     |      |
|---------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------|--------------------------|-----------|--------|-----|------|
| Test                                                    | Symbol              |                                                                                     |                          |           | Limits |     | Unit |
|                                                         |                     | -55°C ≤ T <sub>C</sub> ≤ unless otherwise                                           |                          | subgroups | Min    | Max |      |
| Propagation delay time,                                 | t <sub>PHL3</sub> , | T <sub>C</sub> = +25°C                                                              | Vcc = 2.0 V              | 9         |        | 195 | ns   |
| ENABLE T to RIPPLE CARRY OUT                            | t <sub>PLH3</sub>   | $C_L = 50 \text{ pF} \pm 10\%$<br>See figure 4                                      | $V_{CC} = 4.5 V$         |           |        | 39  |      |
| 0/11.11.1 00 I                                          | <u> </u>            | See ligure 4                                                                        | $V_{CC} = 6.0 \text{ V}$ |           |        | 33  |      |
|                                                         |                     | T <sub>C</sub> = -55°C, +125°C                                                      | Vcc = 2.0 V              | 10, 11    |        | 295 | ns   |
|                                                         |                     | $C_L = 50 \text{ pF} \pm 10\%$<br>See figure 4                                      | $V_{CC} = 4.5 V$         |           |        | 59  |      |
|                                                         |                     | See figure 4                                                                        | $V_{CC} = 6.0 \text{ V}$ |           |        | 50  |      |
| Propagation delay time,<br>CLOCK to RIPPLE<br>CARRY OUT | t <sub>PHL4</sub> , | T <sub>C</sub> = +25°C                                                              | Vcc = 2.0 V              | 9         |        | 215 | ns   |
|                                                         | tpLH4<br><u>3</u> / | C <sub>L</sub> = 50 pF ±10%<br>See figure 4                                         | $V_{CC} = 4.5 \text{ V}$ |           |        | 43  |      |
|                                                         |                     |                                                                                     | $V_{CC} = 6.0 V$         |           |        | 37  |      |
|                                                         |                     | $T_{C} = -55^{\circ}C$ , +125°C<br>$C_{L} = 50 \text{ pF} \pm 10\%$<br>See figure 4 | $V_{CC} = 2.0 \text{ V}$ | 10, 11    |        | 325 | ns   |
|                                                         |                     |                                                                                     | $V_{CC} = 4.5 \text{ V}$ |           |        | 65  |      |
|                                                         |                     |                                                                                     | $V_{CC} = 6.0 \text{ V}$ |           |        | 55  |      |
| Propagation delay time,                                 | t <sub>PHL5</sub>   | tphls $T_C = +25^{\circ}C$<br>$3/$ $C_L = 50 \text{ pF} \pm 10\%$<br>See figure 4   | Vcc = 2.0 V              | 9         |        | 220 | ns   |
| RESET to RIPPLE<br>CARRY OUT                            | <u>3</u> /          |                                                                                     | $V_{CC} = 4.5 \text{ V}$ |           |        | 44  |      |
| 5/11(1C) 501                                            |                     |                                                                                     | Vcc = 6.0 V              |           |        | 37  |      |
|                                                         |                     | T <sub>C</sub> = -55°C, +125°C                                                      | Vcc = 2.0 V              | 10, 11    |        | 330 | ns   |
|                                                         |                     | $C_L = 50 \text{ pF} \pm 10\%$<br>See figure 4                                      | $V_{CC} = 4.5 \text{ V}$ |           |        | 66  |      |
|                                                         |                     | See ligure 4                                                                        | Vcc = 6.0 V              |           |        | 56  |      |
| Transition time                                         | tπ∟н                | T <sub>C</sub> = +25°C                                                              | Vcc = 2.0 V              | 9         |        | 75  | ns   |
|                                                         | t⊤⊢∟<br><u>4</u> /  | $C_L = 50 \text{ pF} \pm 10\%$<br>See figure 4                                      | Vcc = 4.5 V              |           |        | 15  |      |
|                                                         |                     | See ligure 4                                                                        | Vcc = 6.0 V              |           |        | 13  |      |
|                                                         |                     | T <sub>C</sub> = -55°C, +125°C                                                      | Vcc = 2.0 V              | 10, 11    |        | 110 | ns   |
|                                                         |                     | $C_L = 50 \text{ pF} \pm 10\%$<br>See figure 4                                      | Vcc = 4.5 V              |           |        | 22  |      |
|                                                         |                     | See ligure 4                                                                        | Vcc = 6.0 V              | 7         |        | 19  |      |

- I/ For a power supply of 5 V  $\pm 10\%$ , the worst case output voltages (V<sub>OH</sub> and V<sub>OL</sub>) occur for HC at 4.5 V. Thus, the 4.5 V values should be used when designing with this supply. Worst cases V<sub>IH</sub> and V<sub>IL</sub> occur at V<sub>CC</sub> = 5.5 V and 4.5 V respectively. (The V<sub>IH</sub> value at 5.5 V is 3.85 V.) The worst case leakage currents (I<sub>IN</sub>, I<sub>CC</sub>, and I<sub>OZ</sub>) occur for CMOS at the higher voltage, so the 6.0 V values should be used. Power dissipation capacitance (C<sub>PD</sub>), typically 45 pF per latch, determines the no load dynamic power consumption, P<sub>D</sub> = (C<sub>PD</sub> V<sub>CC</sub><sup>2</sup> f) + (I<sub>CC</sub> V<sub>CC</sub>), and the no load dynamic current consumption, I<sub>S</sub> = C<sub>PD</sub> V<sub>CC</sub> f + I<sub>CC</sub>.
- $\underline{2}$ / V<sub>IH</sub> and V<sub>IL</sub> tests are not required and shall be applied as forcing functions for the V<sub>OH</sub> or V<sub>OL</sub> tests.
- 3/ AC testing at  $V_{CC} = 2.0 \text{ V}$  and  $V_{CC} = 6.0 \text{ V}$  shall be guaranteed, if not tested, to the specified limits.
- $\underline{4}$ / Transition time (t<sub>TLH</sub>, t<sub>THL</sub>), if not tested, shall be guaranteed to the specified limits in table I.

| STANDARD<br>MICROCIRCUIT DRAWING                   | SIZE<br><b>A</b> |                     | 5962-86824 |
|----------------------------------------------------|------------------|---------------------|------------|
| DLA LAND AND MARITIME<br>COLUMBUS, OHIO 43218-3990 |                  | REVISION LEVEL<br>C | SHEET 6    |

| Device type     | 01               |                  |  |
|-----------------|------------------|------------------|--|
| Case Outline    | E, F             | 2                |  |
| Terminal Number | Terminal Symbol  | Terminal Symbol  |  |
| 1               | RESET            | NC               |  |
| 2               | CLOCK            | RESET            |  |
| 3               | P0               | CLOCK            |  |
| 4               | P1               | P0               |  |
| 5               | P2               | P1               |  |
| 6               | P3               | NC               |  |
| 7               | ENABLE P         | P2               |  |
| 8               | GND              | P3               |  |
| 9               | LOAD             | ENABLE P         |  |
| 10              | ENABLE T         | GND              |  |
| 11              | Q3               | NC               |  |
| 12              | Q2               | LOAD             |  |
| 13              | Q1               | ENABLE T         |  |
| 14              | Q0               | Q3               |  |
| 15              | RIPPLE CARRY OUT | Q2               |  |
| 16              | Vcc              | NC               |  |
| 17              |                  | Q1               |  |
| 18              |                  | Q0               |  |
| 19              |                  | RIPPLE CARRY OUT |  |
| 20              |                  | Vcc              |  |

NC = No internal connection

FIGURE 1. <u>Terminal connections</u>.

|       | INPUTS   |      |          | OUTPUTS  |                 |
|-------|----------|------|----------|----------|-----------------|
| CLEAR | CLOCK    | LOAD | ENABLE P | ENABLE T | Q               |
| L     | X        | X    | X        | X        | REST            |
| Н     | <b>↑</b> | L    | X        | X        | LOAD RESET DATA |
| Н     | <b>↑</b> | Н    | Н        | Н        | COUNT           |
| Н     | X        | Н    | L        | X        | NO COUNT        |
| Н     | X        | Н    | X        | L        | NO COUNT        |

H = High voltage level.
L = Low voltage level.
X = Irrelevant.
↑ = CLOCK transition from low-to-high level.

FIGURE 2. Truth table.

| STANDARD<br>MICROCIRCUIT DRAWING                   | SIZE<br><b>A</b> |                     | 5962-86824 |
|----------------------------------------------------|------------------|---------------------|------------|
| DLA LAND AND MARITIME<br>COLUMBUS, OHIO 43218-3990 |                  | REVISION LEVEL<br>C | SHEET 7    |

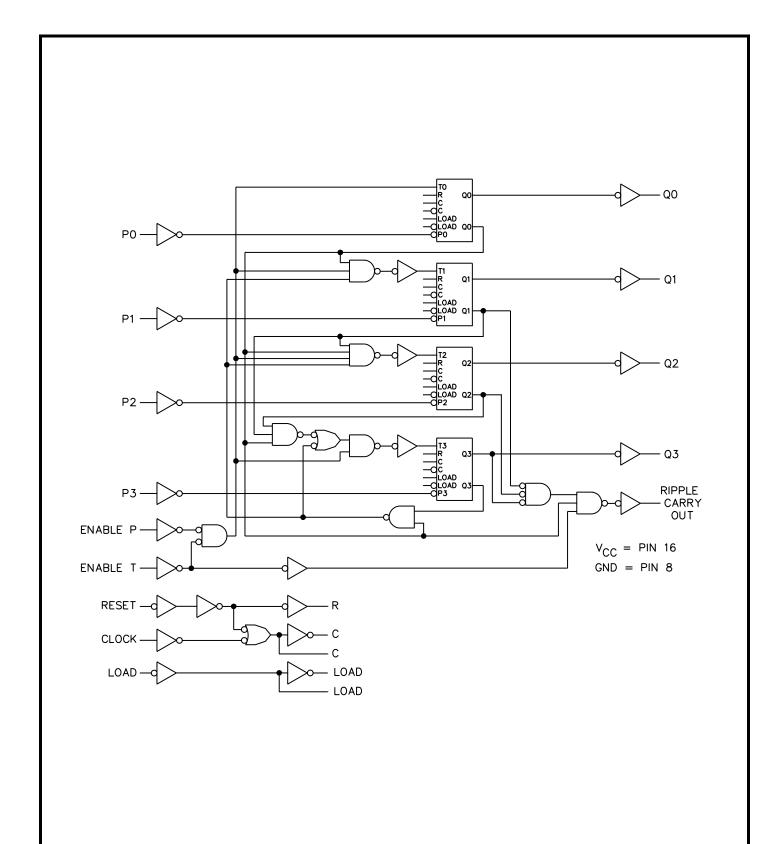



FIGURE 3. Logic diagram.

| STANDARD<br>MICROCIRCUIT DRAWING                   | SIZE<br><b>A</b> |                     | 5962-86824 |
|----------------------------------------------------|------------------|---------------------|------------|
| DLA LAND AND MARITIME<br>COLUMBUS, OHIO 43218-3990 |                  | REVISION LEVEL<br>C | SHEET 8    |

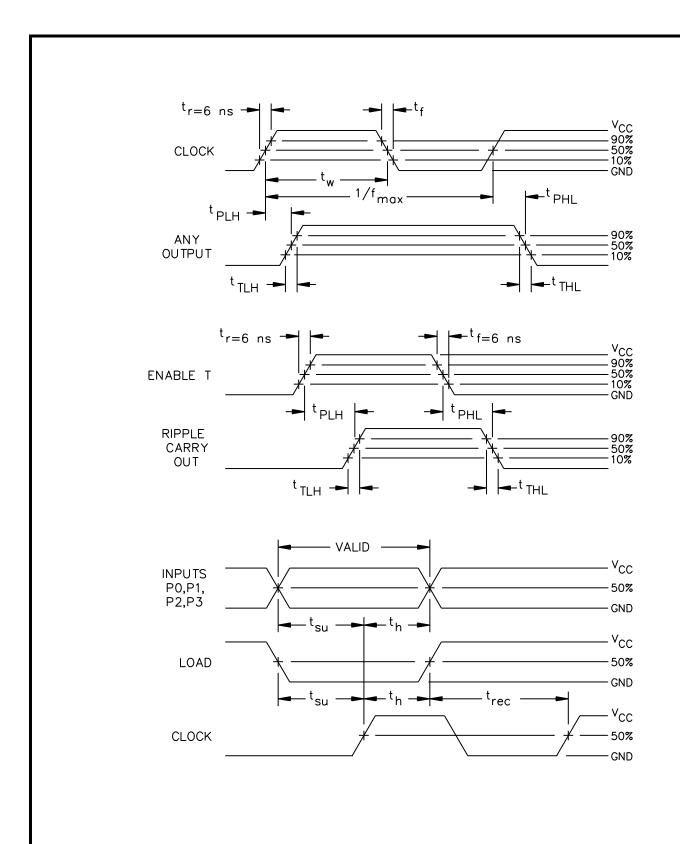
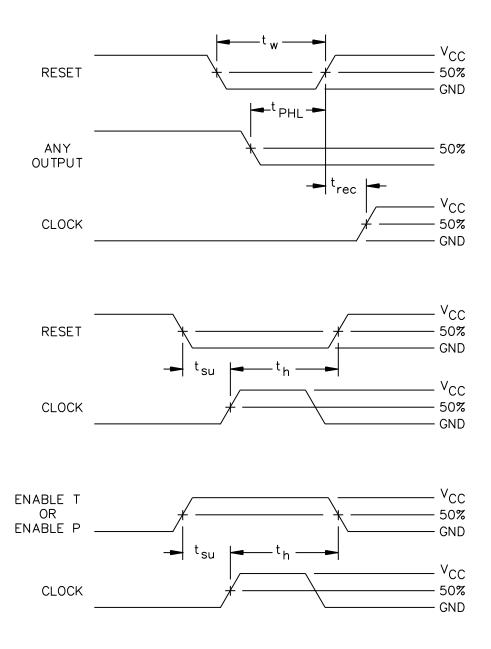




FIGURE 4. Switching waveforms.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br><b>A</b> |                | 5962-86824 |
|----------------------------------|------------------|----------------|------------|
| DLA LAND AND MARITIME            |                  | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43218-3990        |                  | C              | 9          |



### NOTES:

- 1.  $C_L = 50 \text{ pF minimum or equivalent (includes probe and test fixture capacitance)}$ .
- 2. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz,  $Z_0 = 50\Omega$ ,  $t_r = 6.0$  ns,  $t_f = 6.0$  ns.
- 3. The outputs are measured one at a time with one input transition per measurement.
- 4. Timing parameters shall be tested at a minimum input frequency of 1 MHz.

FIGURE 4. Switching waveforms - Continued.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br><b>A</b> |                | 5962-86824 |
|----------------------------------|------------------|----------------|------------|
| DLA LAND AND MARITIME            |                  | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43218-3990        |                  | C              | 10         |

#### 4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
  - a. Burn-in test, method 1015 of MIL-STD-883.
    - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
    - (2)  $T_A = +125^{\circ}C$ , minimum.
  - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

TABLE II. Electrical test requirements.

| MIL-STD-883 test requirements                  | Subgroups<br>(in accordance with<br>MIL-STD-883, method 5005,<br>table I) |
|------------------------------------------------|---------------------------------------------------------------------------|
| Interim electrical parameters (method 5004)    |                                                                           |
| Final electrical test parameters (method 5004) | 1*, 2, 9                                                                  |
| Group A test requirements (method 5005)        | 1, 2, 3, 7, 9, 10, 11**                                                   |
| Groups C and D end-point                       | 1, 2, 3                                                                   |
| electrical parameters (method 5005)            |                                                                           |

<sup>\*</sup> PDA applies to subgroup 1.

- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
  - 4.3.1 Group A inspection.
    - a. Tests shall be as specified in table II herein.
    - b. Subgroups 5, 6, and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
    - c. Subgroup 4 (C<sub>IN</sub> measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance. Generic test data may be used to satisfy the subgroup 4 requirements.
    - d. Subgroups 7 tests shall be sufficient to verify the truth table in figure 2 herein.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br><b>A</b> |                | 5962-86824 |
|----------------------------------|------------------|----------------|------------|
| DLA LAND AND MARITIME            |                  | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43218-3990        |                  | C              | 11         |

<sup>\*\*</sup> Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

- 4.3.2 Groups C and D inspections.
  - a. End-point electrical parameters shall be as specified in table II herein.
  - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
    - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
    - (2)  $T_A = +125^{\circ}C$ , minimum.
    - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD to that system. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0540.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103 and QML-38535. The vendors listed in MIL-HDBK-103 and QML-38535 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA.

| STANDARD                  |  |  |
|---------------------------|--|--|
| MICROCIRCUIT DRAWING      |  |  |
| DLA LAND AND MARITIME     |  |  |
| COLUMBUS, OHIO 43218-3990 |  |  |

| SIZE<br><b>A</b> |                     | 5962-86824  |
|------------------|---------------------|-------------|
|                  | REVISION LEVEL<br>C | SHEET<br>12 |

#### STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 19-04-30

Approved sources of supply for SMD 5962-86824 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at: <a href="https://landandmaritimeapps.dla.mil/programs/smcr/">https://landandmaritimeapps.dla.mil/programs/smcr/</a>

| Standard             | Vendor | Vendor         |
|----------------------|--------|----------------|
| Microcircuit Drawing | CAGE   | similar        |
| PIN <u>1</u> /       | number | PIN <u>2</u> / |
| 5962-86824012A       | 3V146  | 54HC160/B2A    |
| 5962-8682401EA       | 3V146  | 54HC160/BEA    |
| 5962-8682401FA       | 3V146  | 54HC160/BFA    |

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGEVendor namenumberand address

3V146 Rochester Electronics Inc.

16 Malcolm Hoyt Drive Newburyport, MA 01950

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.