

## PART NUMBER 54HC58J

# Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

## **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
  - Class Q Military
  - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

## INTEGRATED CIRCUITS

# DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

# **74HC58**Dual AND-OR gate

Product specification
File under Integrated Circuits, IC06

December 1990





74HC58

#### **FEATURES**

· Output capability: standard

I<sub>CC</sub> category: SSI

#### **GENERAL DESCRIPTION**

The 74HC58 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard no. 7A.

The "58" provides two sections of AND-OR gates. One section contains a 2-wide, 3-input (1A to 1F) AND-OR gate and the second section contains a 2-wide, 2-input (2A to 2D) AND-OR gate.

#### **QUICK REFERENCE DATA**

 $GND = 0 \text{ V}; T_{amb} = 15 \,^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$ 

| SYMBOL                              | PARAMETER                              | CONDITIONS                                  | TYPICAL | UNIT |  |
|-------------------------------------|----------------------------------------|---------------------------------------------|---------|------|--|
| STWIBOL                             | TAXAMETER                              | CONDITIONS                                  | HC      |      |  |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay                      | $C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$ |         |      |  |
|                                     | 1n to 1Y                               |                                             | 11      | ns   |  |
|                                     | 2n to 2Y                               |                                             | 9       | ns   |  |
| C <sub>I</sub>                      | input capacitance                      |                                             | 3.5     | pF   |  |
| C <sub>PD</sub>                     | power dissipation capacitance per gate | notes 1 and 2                               | 18      | pF   |  |

#### Notes

1.  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

 $f_i$  = input frequency in MHz

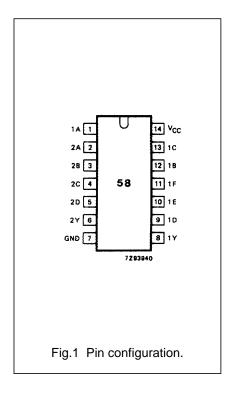
 $f_o$  = output frequency in MHz

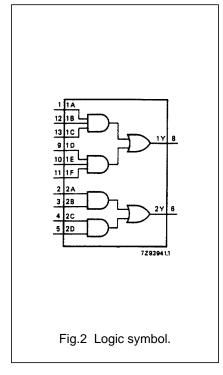
 $C_L$  = output load capacitance in pF

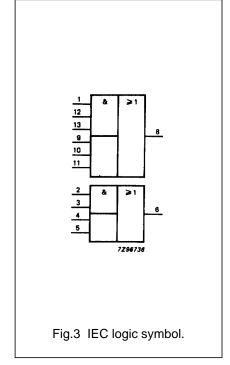
V<sub>CC</sub> = supply voltage in V

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$ 

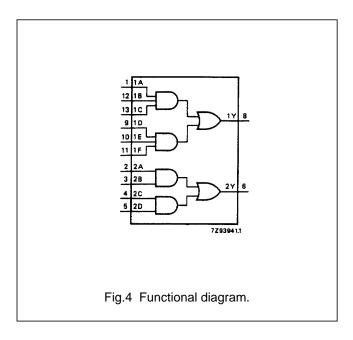
2. For HC the condition is  $V_I = GND$  to  $V_{CC}$ 

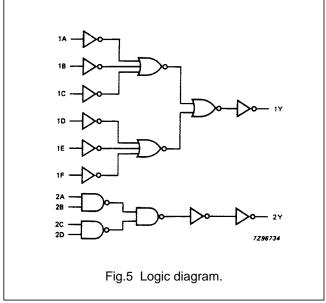

## **ORDERING INFORMATION**


See "74HC/HCT/HCU/HCMOS Logic Package Information".


## 74HC58

## **PIN DESCRIPTION**


| PIN NO.              | SYMBOL          | NAME AND FUNCTION       |
|----------------------|-----------------|-------------------------|
| 1, 12, 13, 9, 10, 11 | 1A to 1F        | data inputs             |
| 2, 3, 4, 5           | 2A to 2D        | data inputs             |
| 8, 6                 | 1Y, 2Y          | data outputs            |
| 7                    | GND             | ground (0 V)            |
| 14                   | V <sub>CC</sub> | positive supply voltage |








74HC58





## **FUNCTION TABLE** (1)

|    |    | OUTPUT |    |    |    |    |
|----|----|--------|----|----|----|----|
| 1A | 1B | 1C     | 1D | 1E | 1F | 1Y |
| L  | Х  | Х      | L  | Χ  | Χ  | L  |
| L  | X  | X      | X  | L  | X  | L  |
| L  | X  | X      | X  | X  | L  | L  |
| X  | L  | X      | L  | X  | X  | L  |
| Χ  | L  | Х      | X  | L  | Х  | L  |
| Χ  | L  | Х      | Х  | Х  | L  | L  |
| X  | X  | L      | L  | X  | X  | L  |
| X  | X  | L      | X  | L  | X  | L  |
| X  | X  | L      | X  | X  | L  | L  |
| X  | X  | X      | Н  | Н  | Н  | Н  |
| Н  | Н  | Н      | Х  | X  | Х  | Н  |

|    | INP | OUTPUT |    |    |
|----|-----|--------|----|----|
| 2A | 2B  | 2C     | 2D | 2Y |
| L  | Х   | L      | Х  | L  |
| L  | X   | X      | L  | L  |
| X  | L   | L      | X  | L  |
| X  | L   | X      | L  | L  |
| X  | X   | Н      | Н  | Н  |
| Н  | Н   | X      | X  | Н  |

#### Note

H = HIGH voltage level
 L = LOW voltage level

X = don't care

74HC58

## DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I<sub>CC</sub> category: SSI

## **AC CHARACTERISTICS FOR 74HC**

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ 

| SYMBOL                              |                                                  | T <sub>amb</sub> (°C) |                |                 |      |                 |      |                 | TEST CONDITIONS |                   |       |
|-------------------------------------|--------------------------------------------------|-----------------------|----------------|-----------------|------|-----------------|------|-----------------|-----------------|-------------------|-------|
|                                     | DADAMETER                                        | 74HC                  |                |                 |      |                 |      |                 |                 |                   |       |
|                                     | PARAMETER                                        | +25                   |                | -40 to +85      |      | -40 to +125     |      | UNIT            | V <sub>CC</sub> | WAVEFORMS         |       |
|                                     |                                                  | min.                  | typ.           | max.            | min. | max.            | min. | max.            |                 | (1)               |       |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>1A,1B,1C,1D,1E,<br>1F to 1Y |                       | 36<br>13<br>10 | 115<br>23<br>20 |      | 145<br>29<br>25 |      | 175<br>35<br>30 | ns              | 2.0<br>4.5<br>6.0 | Fig.6 |
| t <sub>PHL</sub> / t <sub>PLH</sub> | propagation delay<br>2A,2B,2C,2D to 2Y           |                       | 30<br>11<br>9  | 100<br>20<br>17 |      | 125<br>25<br>21 |      | 150<br>30<br>26 | ns              | 2.0<br>4.5<br>6.0 | Fig.6 |
| t <sub>THL</sub> / t <sub>TLH</sub> | output transition time                           |                       | 19<br>7<br>6   | 75<br>15<br>13  |      | 95<br>19<br>16  |      | 110<br>22<br>19 | ns              | 2.0<br>4.5<br>6.0 | Fig.6 |

#### **AC WAVEFORMS**

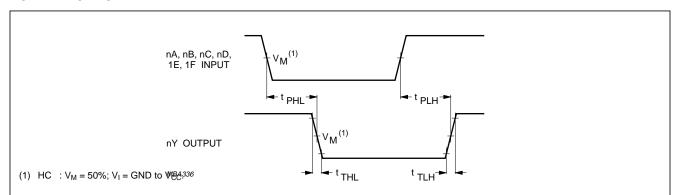



Fig.6 Waveforms showing the input (nA, nB, nC, nD, 1E, 1F) to output (nY) propagation delays and the output transition times.

## **PACKAGE OUTLINES**

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".