

PART NUMBER 54L91DM-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN5491, 54L91, 7491

8-Bit Shift Registers

These monolithic serial-in, serial-out, 8-bit shift registers utilize transistor-transistor logic (TTL) circuits and are composed of eight R-S master-slave flip-flops, input gating, and a clock driver. Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. This clock pulse inverter/driver causes these circuits to shift information one bit on the positive edge of an input clock pulse.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

TYPES SN5491A, SN54L91, SN54LS91,SN7491A, SN74LS91 8-BIT SHIFT REGISTERS

MARCH 1974 -- REVISED DECEMBER 1983

For applications in: Digital Computer Systems Data-Handling Systems Control Systems

ТҮРЕ	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
′91A	18 MHz	175 mW
'L91	6.5 MHz	17.5 mW
'LS91	18 MHz	60 mW

description

These monolithic serial-in, serial-out, 8-bit shift registers utilize transistor-transistor logic (TTL) circuits and are composed of eight R-S master-slave flip-flops, input gating, and a clock driver. Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. This clock pulse inverter/driver causes these circuits to shift information one bit on the positive edge of an input clock pulse.

FUNCTION TABLE

INP AT		OUTI AT t	PUTS n+8
Α	В	ŒΗ	ΩH
Н	Н	н	L
L	X	L	Н
х	L	L	н

 $t_n =$ Reference bit time, clock low $t_{n+8} =$ Bit time after 8

low-to-high clock transitions.

SN5491A, SN54LS91 ... W PACKAGE (TOP VIEW)

NC - No internal connection

schematics of inputs and outputs

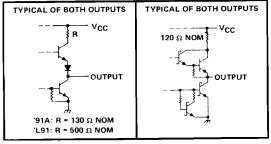
'91A, 'L91

EQUIVALENT OF EACH INPUT

VCC

Req

17 kΩ NOM


INPUT

'91A: Req = 4 kΩ NOM

'L91: Req = 40 kΩ NOM

'191A, 'L91

'LS91

PRODUCTION DATA

This document contains information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

3-369

3

TTL DEVICES

logic diagram

Pin numbers shown in () are for the D, J or N packages and pin numbers shown in () are for the W package.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		/
Input voltage (see Note 2)	. ,	/
Operating free-air temperature range: SN5491	A	3
SN7491	A	3
Storage temperature range	-65°C to 150°C	3

2. Input signals must be zero or positive with respect to network ground terminal.

recommended operating conditions

		SN5491A			SN7491A			
	MIN	MIN NOM MA	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧	
High-level output current, IOH			-400			-400	μΑ	
Low-level output current, IOL			16			16	mA	
Width of clock input pulse, tw	25	_		25			ns	
Setup time, t _{su} (see Figure 1)	25			25			ns	
Hold time, th (see Figure 1)	0			0			15	
Operating free-air temperature, T _A	55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETED	TEST CONDITIONS [†]		SN5491	Α	\$	N7491	Α	UNIT	
1	PARAMETER	TEST CONDITIONS.	MIN	NOM	MAX	MIN	NOM	0.8 0.4 1 40 -1.6 -57	CMII	
VIH	High-level input voltage		2			2			٧	
VIL	Low-level input voltage		T		0.8			0.8	V	
v _{он}	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -400 μA	2.4	3.5		2,4	3.5		٧	
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	٧	
11	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			1	mA	
ЧН	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40			40	μА	
11L	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA	
los	Short-circuit output current §	V _{CC} = MAX	-20		-57	-18	-	-57	mA .	
Icc	Supply current	V _{CC} = MAX, See Note 3	7	35	50		35	58	mA	

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, T_A = 25° C

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C _L = 15 pF,	10	18		MHz
tpLH Propagation delay time, low-to-high-level output	R _L = 400 Ω,		24	40	ns
tpHL Propagation delay time, high-to-low-level output	See Figure 1		27	40	ns

NOTE 3: I_{CC} is measured after the eighth clock pulse with the output open and A and B inputs grounded.

Supply voltage, V _{CC} (see Note 1)	8 V
Input voltage (see Note 2)	5.5 V
Operating free-air temperature range—55	'C to 125°C
Storage temperature range	'C to 150°C

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Input signals must be zero or positive with respect to network ground terminal.

recommended operating conditions

				N54L9	1	UNIT
			MIN	100 150 120 0	MAX] UNIT
Vcc	Supply voltage		4.5	5	5.5	٧
ViH	High-level input voltage		2			٧
VIL	Low-level input voltage				0.7	V
ТОН	High-level output current				0.1	mΑ
IOL	Low-level output current				2	mA
•	Low-level output current Width of clock input pulse	High logic level	 100			ns
^t w(clock)	whath of clock input pulse	Low logic level	150			ns
t _{su}	Setup time (See Figure 1)		120			ns
th	Hold time (See Figure 1)		0			ns
TA	Operating free-air temperature		- 55		125	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS †		SN54L91		UNIT	
PARAMETER	TEST CONDITIONS I		MAX	LONIII		
Voн	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.7 V, I _{OH} = -0.1 mA	2.4	3.3		٧	
VOL	$V_{CC} = MIN$, $V_{IH} = 2V$, $V_{IL} = 0.7V$, $I_{OL} = 2 \text{ mA}$		0.15	0.3	٧	
H	V _{CC} = MAX, V _I = 5.5 V			0.1	mA	
ЧН	V _{CC} = MAX, V _I = 2.4 V			10	μА	
l IL	V _{CC} = MAX, V _I = 0.3 V			- 0.18	mΑ	
los	V _{CC} = MAX,	- 3		– 15	mΑ	
icc	V _{CC} = MAX, See Note 3		3.5	6.6	mA	

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 3: ICC is measured after the eighth clock pulse with the outputs open and A and B inputs grounded,

switching characteristics, VCC = 5 V, TA = 25°C (see note 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
f _{max}					3	6.5		MHz
^t PLH	Any	$\alpha_{H}, \overline{\alpha}_{h}$	RL = 4 kΩ,	C _L = 50 pF		55	100	ns
tPHL				100	150	ns		

NOTE 4: For load circuits and voltage waveforms, see Figure 1.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	 7 V
Input voltage	 . 7 V
Operating free-air temperature range: SN54LS9	 125°C
SN74LS9	 70°C
Storage temperature range	 150°C

NOTES: 1. Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54LS91			SN74LS91			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH			-400			- 400	μА	
Low-level output current, IOL			4			8	mA	
Width of clock input pulse, tw	25			25	-		ns	
Setup time, t _{su} (see Figure 1)	25	-		25			ns	
Hold time, th (see Figure 1)	0			0			ns	
Operating free-air temperature, TA	55		125	0		70	Ċ	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]		SN54LS91			SN74LS91			[]
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{IH} High-level input voltage			2			2			V
V _{IL} Low-level input voltage		<u> </u>			0.7			0.8	V
VIK Input clamp voltage	V _{CC} = MIN, I ₁ = 18 mA				-1.5			-1.5	V
VOH High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = V _{IL} max, I _{OH} = -400 μA		2.5	3.5		2.7	3.5		v
VOL Low-level output voltage	V _{CC} MIN, V _{IH} 2 V, V _{IL} V _{IL} max	IOL = 4 mA		0.25	0.4		0.25 0.35	0.4	4 V
Input current at II maximum input voltage	V _{CC} : MAX, V _I = 7 V				0.1			0.1	mA
IH High-level input current	V _{CC} = MAX, V _I = 2.7 V				20			20	μА
IIL Low-level input current	V _{CC} = MAX, V _I = 0.4 V				-0.4			-0.4	mA
IOS Short-circuit output current §	V _{CC} MAX		-20		-100	-20		-100	mA
ICC Supply current	V _{CC} MAX, See Note 3			12	20		12	20	mA

 $^{^{\}dagger}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency	C _L - 15 pF,	10	18		MHz
tр_H Propagation delay time, low-to-high-level output	R _L = 2 kΩ,		24	40	ns
tpHL Propagation delay time, high to-low-level output	Sec Figure 1		27	40	ns

 $^{^{\}pm}$ All typical values are at V $_{
m CC}$ = 5 V , T $_{
m A}$ = 25 C.

Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

PARAMETER MEASUREMENT INFORMATION VCC = 5 V OUTPUT LOAD CIRCUIT 1 V_{CC} = 5 V **\$**_{RL} See Note C PULSE GENERATOR See Se (See Note A) Note B Note D 2.4 V LOAD CIRCUIT 2 SAME AS LOAD CIRCUIT 1 9 thru 15 16 17 18 19 thru 23 24 25 CLOCK-PULSE INPUT INPUT A оитрит ан TYPICAL INPUT/OUTPUT WAVEFORMS lw(clock) w(clock) CLOCK 90% INPUT CLOCK INPUT 10% t_{r} INPUT OUTPUT QH OR QH A OR B th OUTPUT QH OR QH INPUT A OR 3 -Vol - thold SWITCHING TIMES VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES VOLTAGE WAVEFORMS NOTES: A. The generator has the following characteristics: $t_{w(clock)}$ = 500 ns, PRR \leqslant 1 MHz, z_{out} \approx 50 Ω . For SN5491A/SN7491A, $t_r \leqslant$ 10 ns and $t_f \leqslant$ 10 ns; for SN54L91, $t_r \leqslant$ 15 ns and $t_f \leqslant$ 15 ns; and for SN54LS91, $t_r =$ 15 ns, and $t_f =$ 6 ns.

- B. C_L includes probe and jig capacitance.
 C. All diodes are 1N3064 or equivalent.
- D. C₁ = 30 pF and is used for SN54L91 only. E. For SN5491A/SN7491A, V_{ref} = 1.5 V; for SN54L91 and SN54LS91/SN74LS91, V_{ref} = 1.3 V.

FIGURE 1-SWITCHING TIMES

3-373