

PART NUMBER 54LS196WB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

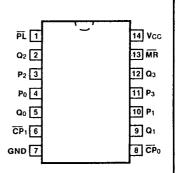
Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

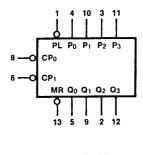
T-45-23-13 196

54/74196 54LS/74LS196

PRESETTABLE DECADE COUNTERS


DESCRIPTION - The '196 decade ripple counter is partitioned into divideby-two and divide-by-five sections which can be combined to count either in BCD (8421) sequence or in a bi-quinary mode producing a 50% duty cycle output. Both circuit types have a Master Reset (MR) input which overrides all other inputs and asynchronously forces all outputs LOW. A Parallel Load input (PL) overrides clocked operations and asynchronously loads the data on the Parallel Data inputs (Pn) into the flip-flops. This preset feature makes the circuits usable as programmable counters. The circuits can also be used as 4-bit latches, loading data from the Parallel Data inputs when PL is LOW and storing the data when \overline{PL} is HIGH. In the counting modes, state changes are initiated by the falling edge of the clock.

- HIGH COUNTING RATES TYPICALLY 60 MHz
- CHOICE OF COUNTING MODES BCD, BI-QUINARY, BINARY
- ASYNCHRONOUS PRESET AND MASTER RESET


ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	OUT	$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ}\text{C to } +70^{\circ}\text{C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{ C to } +125^{\circ}\text{ C}$	TYPE
Plastic DIP (P)	Α	74196PC, 74LS196PC		9A
Ceramic DIP (D)	Α	74196DC, 74LS196DC	54196DM, 54LS196DM	6A
Flatpak (F)	Α	74196FC, 74LS196FC	54196FM, 54LS196FM	31

CONNECTION DIAGRAM PINOUT A

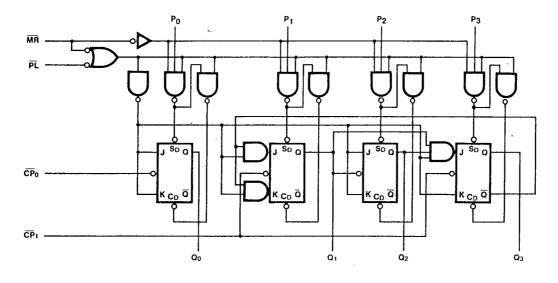
LOGIC SYMBOL

Vcc = Pin 14 GND = Pin 7

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

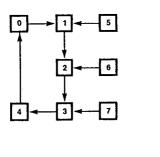
PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW	
CP₀	÷2 Section Clock Input (Active Falling Edge)	2.0/3.0	1.0/1.5	
CP 1	÷5 Section Clock Input (Active Falling Edge)	3.0/4.0	2.0/1.75	
MR	Asynchronous Master Reset Input (Active LOW)	2.0/2.0	1.0/0.5	
Po P3	Parallel Data Inputs	1.0/1.0	0.5/0.25	
P ₀ — P ₃ PL	Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	0.5/0.25	
Q ₀ — Q ₃ *	Flip-flop Outputs*	20/10	10/5.0 (2.5)	

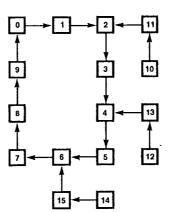
 ${}^{\bullet}Q_0$ is guaranteed to drive the full rated fan-out plus the $\overline{\mathsf{CP}}_1$ input.


54196-1X 4-299

FUNCTIONAL DESCRIPTION — The '196 and '197 are asynchronous presettable decade and binary ripple counters. The '196 decade counter is partitioned into divide-by-two and divide-by-five sections while the '197 is partitioned into divide-by-two and divide-by-eight sections, with all sections having a separate Clock input. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The $\overline{\text{CP}_0}$ input serves the Q0 flip-flop in both circuit types while the $\overline{\text{CP}_1}$ input serves the divide-by-five or divide-by-eight section. The Q0 output is designed and specified to drive the rated fan-out plus the $\overline{\text{CP}_1}$ input. With the input frequency connected to $\overline{\text{CP}_0}$ and with Q0 driving $\overline{\text{CP}_1}$, the '197 forms a straight forward modulo-16 counter, with Q0 the least significant output and Q3 the most significant output.

The '196 decade counter can be connected up to operate in two different count sequences. With the input frequency connected to $\overline{CP_0}$ and with Q_0 driving $\overline{CP_1}$, the circuit counts in the BCD (8421) sequence. With the input frequency connected to $\overline{CP_1}$ and Q_3 driving $\overline{CP_0}$, Q_0 becomes the low frequency output and has a 50% duty cycle waveform. Note that the maximum counting rate is reduced in the latter (bi-quinary) configuration because of the interstage gating delay within the divide-by-five section.


The '196 and '197 have an asynchronous active LOW Master Reset input (\overline{MR}) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (\overline{PL}) overrides the clock inputs and loads the data from Parallel Data (P_0-P_3) inputs into the flip-flops. While \overline{PL} is LOW, the counters act as transparent latches and any change in the P_n inputs will be reflected in the outputs. In order for the intended parallel data to be entered and stored, the recommended setup and hold times with respect to the rising edge of \overline{PL} should be observed.


LOGIC DIAGRAM

÷5 STATE DIAGRAM

BCD STATE DIAGRAM

MODE SELECT TABLE

	INPL	JTS	RESPONSE			
MR	PL	СP				
L H H	X L H	X X L	Q _n forced LOW P _n → Q _n Count Up			

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

	PADMETER		54/74		54/74LS		UNITS	CONDITIONS
	PARMETE	Min	Max	Min	Мах	0,		
	<u>CP₀</u> '196 <u>CP</u> 1 '197 <u>CP</u> 1		1.0 1.0 1.0		0.2 0.4 0.2	mA	V _{CC} = Max, V _{IN} = 5.5 V	
lcc	Power Supply Currer	at		59		20	mA	V _{CC} = Max All Inputs = Gnd

1333

D-12

4-301 54196-31

			5	4/74	54/	1/74LS		
SYMBOL	PARAMETER			= 15 pF = 400 Ω		15 pF	UNITS	CONDITIONS
			Min	Max	Min	Max		
f _{max}	Maximum Count Frequency at CP ₀	'196 '197	50 50		45 50		MHz	Figs. 3-1, 3-9
f _{max}	Maximum Count Frequency at CP ₁	'196 '197	25 25		22.5 25		MHz	Fig. 3-9
tpLH tpHL	Propagation Delay CP ₀ to Q ₀			12 15		12 12	ns	Figs. 3-1, 3-9
tpLH tpHL	Propagation Delay CP 1 to Q1			18 21		14 14	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₁ to Q ₂	'196		36 42		34 32	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₁ to Q ₂	'197		36 42		36 34	ns	Figs. 3-1, 3-9
tplH tpHL	Propagation Delay CP ₁ to Q ₃	'196		21 18	 	18 18	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₁ to Q ₃	'197		54 63	<u> </u>	50 55	ns	Figs. 3-1, 3-9
tplH tpHL	Propagation Delay Pn to Qn			24 38		15 35	ns	Figs. 3-2, 3-5
tpLH tpHL	Propagation Delay PL to Q _n			33 36		24 35	ns	Figs. 3-1, 3-17
t _{PHL}	Propagation Delay MR to Q _n			37		37	ns	Figs. 3-1, 3-17
AC OPER	ATING REQUIREMENTS: Vo	c = +5.0	ο V, T/	_λ = +25	ÿ°C			•
SYMBOL	PARAMETER		54	/74	54/7	74LS	UNITS	CONDITIONS
			Min	Max	Min	Max		
t _s (H) t _s (L)	Setup Time HIGH or LOW Pn to PL	'	10 15		8.0 12		ns	Fig. 3-13
th (H) th (L)	Hold Time HIGH or LOW Pn to PL		0		0 6.0		ns	Fig. 3-13
t _w (H)	CP₀ Pulse Width HIGH	'196 '197	20 20		12 10		ns	Fig. 3-9
t _w (H)	CP ₁ Pulse Width HIGH	'196 '197	30 30		24 20		ns	Fig. 3-9
-	PL Pulse Width LOW		20		18		ns	Fig. 3-17
t _w (L)			15		12		ns	Fig. 3-17
t _w (L)	MR Pulse Width LOW	-						
	MR Pulse Width LOW Recovery Time PL to CPn		20		16		ns	Fig. 3-17