

PART NUMBER 54LS259BBEA-ROCS

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

T-46-07-11

54LS259/DM74LS259 8-Bit Addressable Latches

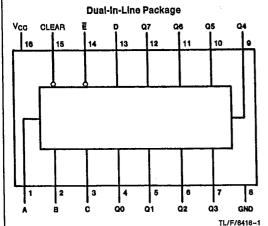
37E D

General Description

These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1-of-8 decoder or demultiplexer with active-high outputs.

Four distinct modes of operation are selectable by controlling the clear and enable inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held high (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

Features


- 8-Bit parallel-out storage register performs serial-to-parallel conversion with storage
- Asynchronous parallel clear
- Active high decoder
- Enable/disable input simplifies expansion
- Direct replacement for Fairchild 9334
- Expandable for N-bit applications
- Four distinct functional modes
- Typical propagation delay times: Enable-to-output 18 ns Data-to-output 16 ns Address-to-output 21 ns Clear-to-output 17 ns
- Fan-out

I_{OL} (sink current) 54LS259 4 mA 74LS259 8 mA

IOH (source current) -0.4 mA

■ Typical I_{CC} 22 mA

Connection Diagram

Order Number 54LS259DMQB, 54LS259FMQB, 54LS259LMQB, DM74LS259WM or DM74LS259N See NS Package Number E20A, J16A, M16B, N16E or W16A

Function Table

Inputs Clear E		Output of Addressed Latch	Each Other Output	Function				
H H L	HLH	D Q _{i0}	Q _{io} Q _{io} L L	Addressable Latch Memory 8-Line Demultiplexer Clear				

Latch Selection Table

Se	elect Inpu	Latch			
С	В	A	Addressed		
L.	L	L.	0		
L	L	Н	1		
L	Н	L	2		
L	Ĥ	н	3		
ĺН	L	L	4		
l H⊢	L	Н	5		
Н	Н	L	6		
H	Н	Н	7		

H = High Level, L = Low Level

D = the Level of the Data Input

 $O_{i0}=$ the Level of Q_i (i = 0, 1, ... 7, as Appropriate) before the Indicated Steady-State Input Conditions Were Established.

NATIONAL SEMICOND (LOGIC) 31E D == 6501122 0070028 7 |

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V Input Voltage 7V

Operating Free Air Temperature Range

54LS -55°C to +125°C DM74LS 0°C to +70°C

Storage Temperature Range -65°C to +150°C

T-46-07-11

Note: The "Absolute Maximum Flatings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter Supply Voltage		54LS259			DM74L\$259			
			Min	Nom	Max	Min	Nom	Max	Units
Vcc			4.5	5	5.5	4.75	5	5.25	v
V _{IH}	High Level Input Voltage		2			2			v
V _{IL}	Low Level Input Voltage				0.7		-	0.8	v
Гон	High Level Output Current				-0.4			-0.4	mA
loL	Low Level Output Current				4			8	mA
tw	Pulse Width (Note 7)	Enable	17			15			ns
		Clear	17			15			
tsu	Setup Time	Data	20↑			15↑			
	(Notes 1, 2, 3 & 7)	Select	15↓			15 J			ns
tH	Hold Time	Data	5↑			0↑			
	(Notes 1, 2 & 7)	Select	0↑			0↑			ns
TA	Free Air Operating Temperature		-55		125	0		70	•c

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter Conditions			Min	Typ (Note 4)	Max 1.5	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_1 = -18 \text{ mA}$	$V_{CC} = Min, I_1 = -18 \text{ mA}$				
VoH	High Level Output	V _{CC} = Min, I _{OH} = Max	54LS	2.5			
	Voltage	V _{IL} = Max, V _{IH} = Min DM74		2.7	3.4		٧
Vol	Low Level Output	V _{CC} = Min, I _{OL} = Max	54LS			0.4	v
	Voltage	V _{IL} = Max, V _{IH} = Min	DM74		0.35	0.5	
		I _{OL} = 4 mA, V _{CC} = Min	DM74		0.25	0.4	
h l	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	DM74			0.1	mA
	Input Voltage	V _I = 10V	54LS	1			
¹ ІН	High Level Input Current	V _{CC} = Max, V _I = 2.7V				20	μА
lıL	Low Level Input Current	V _{CC} = Max, V ₁ = 0.4V				-0.4	mA
	Enable	$V_{CC} = 5.0, V_{I} = 0.4V$				-0.8	i
los Short C	Short Circuit	V _{CC} = Max	54LS	-20		-100	
	Output Current	(Note 5) DM74		-20		-100	mA
cc	Supply Current	V _{CC} = Max (Note 6)			22	36	mA

Note 1: The symbols (\downarrow,\uparrow) indicate the edge of the clock pulse used for reference: \uparrow for rising edge, \downarrow for falling edge.

Note 2: Setup and hold times are with reference to the enable input.

Note 3: The select-to-enable setup time is the time before the High-to-Low enable transition that the select must be stable so that the correct latch is selected and the others not affected.

Note 4: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 6: Icc is measured with all inputs at 4.5V, and all outputs open.

Note 7: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Occultural alice a	. Al					70	O,	"
Switching	, Characteristics	at $V_{CC} = 5V$ and T_A	√ = 25°C ((See Section	1 for Test V	/aveforms	and Out	put Load)

Symbol		From (Input) To (Output)	54LS C _L = 15 pF		DM7	Units	
	Parameter				$C_L = 50 \text{ pF}$ $R_L = 2 \text{ k}\Omega$		
			Min	Max	Min	Max	Í
†PLH	Propagation Delay Time Low to High Level Output	Enable to Output		27		38	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Enable to Output		24		32	ns
tpLH	Propagation Delay Time Low to High Level Output	Data to Output		30		35	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Data to Output		20		30	ns
^t PLH	Propagation Delay Time Low to High Level Output	Select to Output		30		41	ns
tent	Propagation Delay Time High to Low Level Output	Select to Output		29		38	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	Clear to Output		18		36	ns