

PART NUMBER 55118JB-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

PART NUMBER 55118JB

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

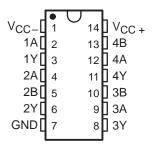
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

- Meet or Exceed the Requirements of ANSI EIA/TIA-232-E and ITU Recommendation V 28
- Designed to Be Interchangeable With Motorola MC1488
- Current-Limited Output: 10 mA Typical
- Power-Off Output Impedance: 300 Ω
 Minimum
- Slew Rate Control by Load Capacitor
- Flexible Supply Voltage Range
- Input Compatible With Most TTL Circuits

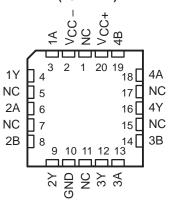
description

The MC1488, SN55188, and SN75188 are monolithic quadruple line drivers designed to interface data terminal equipment with data communications equipment in conformance with ANSI EIA/TIA-232-E using a diode in series with each supply-voltage terminal as shown under typical applications.

The SN55188 is characterized for operation over the full military temperature range of -55°C to 125°C. The MC1488 and SN75188 are characterized for operation from 0°C to 70°C.


FUNCTION TABLE (drivers 2-4)

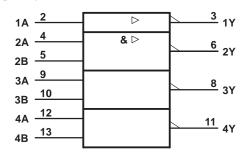
Α	В	Y
Н	Н	L
L	Χ	Н
Х	L	Н


H = high level, L = low level,

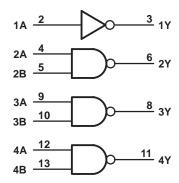
X = irrelevant

SN55188...J OR W PACKAGE MC1488, SN75188...D OR N PACKAGE (TOP VIEW)

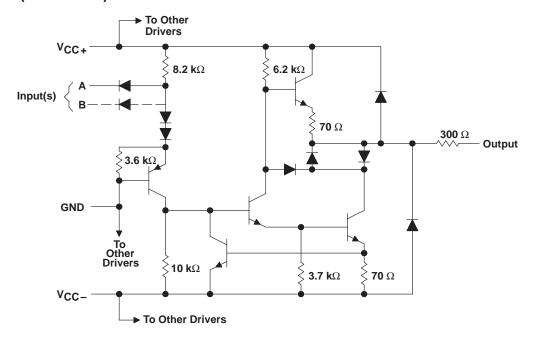
SN55188 . . . FK PACKAGE (TOP VIEW)


NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


Pin numbers shown are for the D and N packages.

logic diagram (positive logic)

Positive logic $Y = \overline{A} (driver 1)$ $Y = \overline{AB} \text{ or } \overline{A} + \overline{B} (drivers 2 thru 4)$

schematic (each driver)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{CC+} at (or below) 25°C free-air temperature (see Notes 1 and	d 2) 15 V
Supply voltage, V _{CC} at (or below) 25°C free-air temperature (see Notes 1 and	d 2)–15 V
Input voltage, V _I	–15 V to 7 V
Output voltage, V _O	
Continuous total power dissipation (see Note 2)	See Dissipation Rating Table
Operating free-air temperature range, T _A : SN55188	–55°C to 125°C
MC1488, SN75188	0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Case temperature for 60 seconds, FK package	260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N packag	ge 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or W package	ge 300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to the network ground terminal.

2. For operation above 25°C free-air temperature, refer to the maximum supply voltage curve, Figure 6. In the FK and J packages, SN55188 chips are alloy mounted.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	_
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	-
W	1000 mW	8.0 mW/°C	640 mW	200 mW

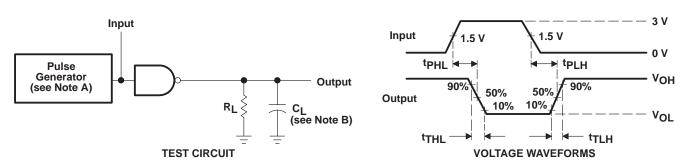
recommended operating conditions

	SN55188			MC1488, SN75188			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC+}	7.5	9	15	7.5	9	15	V
Supply voltage, V _{CC} _	-7.5	-9	-15	-7.5	-9	-15	V
High-level input voltage, VIH	1.9			1.9			V
Low-level input voltage, V _{IL}			0.8			0.8	V
Operating free-air temperature, T _A	-55		125	0		70	°C

electrical characteristics over operating free-air temperature range, $V_{CC\pm}$ = ± 9 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN55188			MC1488, SN75188			UNIT
				MIN	TYP†	MAX	MIN	TYP	MAX	UNII
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	High-level output voltage	$V_{IL} = 0.8 \text{ V},$ $R_L = 3 \text{ k}\Omega$	V _{CC+} = 9 V, V _{CC-} = -9 V	6	7		6	7		V
VOH			$V_{CC+} = 13.2 \text{ V},$ $V_{CC-} = -13.2 \text{ V}$	9	10.5		9	10.5		V
VOL		V _{IH} = 1.9 V,	V _{CC+} = 9 V, V _{CC-} = -9 V		- 7‡	-6		-7	-6	V
VOL	Low-level output voltage	$R_L = 3 \text{ k}\Omega$	$V_{CC+} = 13.2 \text{ V},$ $V_{CC-} = -13.2 \text{ V}$		-10.5 [‡]	-9		-10.5	-9	
ΊΗ	High-level input current	V _I = 5 V				10			10	μΑ
I _I L	Low-level input current	V _I = 0			-1	-1.6		-1	-1.6	mA
IOS(H)	Short-circuit output current at high level§	V _I = 0.8 V,	V _O = 0	-4.6	-9	-13.5	-6	-9	-12	mA
IOS(L)	Short-circuit output current at low level§	V _I = 1.9 V,	VO = 0	4.6	9	13.5	6	9	12	mA
r _o	Output resistance, power off	$V_{CC+} = 0,$ $V_{O} = -2 \text{ V to 2 V}$	V _{CC} -= 0,	300			300			Ω
		V _{CC+} = 9 V,	All inputs at 1.9 V		15	20		15	20	mA
	Supply current from VCC+	No load	All inputs at 0.8 V		4.5	6		4.5	6	
loo		V _{CC+} = 12 V, No load	All inputs at 1.9 V		19	25		19	25	
ICC+			All inputs at 0.8 V		5.5	7		5.5	7	
		V _{CC+} = 15 V, No load, T _A = 25°C	All inputs at 1.9 V			34			34	
			All inputs at 0.8 V			12			12	
	Supply current from I _{CC} _	V _{CC} = -9 V, No load	All inputs at 1.9 V		-13	-17		-13	-17	mA
			All inputs at 0.8 V			-0.5			-0.015	
Icc-		V _{CC} = -12 V, No load	All inputs at 1.9 V		-18	-23		-18	-23	
100-	Supply current from ICC =		All inputs at 0.8 V			-0.5		-	-0.015	ША
		$V_{CC-} = -15 \text{ V},$ No load, $T_A = 25^{\circ}\text{C}$	All inputs at 1.9 V			-34			-34	
			All inputs at 0.8 V			-2.5			-2.5	
PD	Total power dissipation	V _{CC+} = 9 V, No load	V _{CC} -=-9 V,			333			333	mW
+ 4117		V _{CC+} = 12 V, No load	V _{CC} -=-12 V,			576			576	111100

[†] All typical values are at T_A = 25°C. ‡ The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic voltage levels only, e.g., if -6 V is a maximum, the typical value is a more negative voltage.


[§] Not more than one output should be shorted at a time.

switching characteristics, $V_{CC\pm}$ = ± 9 V, T_A = $25^{\circ}C$

PARAMETER		TEST CON	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time, low- to high-level output				220	350	ns
tPHL	Propagation delay time, high- to low-level output	$R_L = 3 k\Omega$,	C _L = 15 pF,		100	175	ns
tTLH	Transition time, low- to high-level output [†]	See Figure 1			55	100	ns
tTHL	Transition time, high- to low-level output [†]				45	75	ns
tTLH	Transition time, low- to high-level output‡	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$	$C_L = 2500 \text{ pF},$		2.5		μs
tTHL	Transition time, high- to low-level output‡	See Figure 1			3.0		μs

[†] Measured between 10% and 90% points of output waveform.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_W = 0.5 \, \mu s$, PRR $\leq 1 \, MHz$, $Z_O = 50 \, \Omega$.

B. C_L includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms

[‡] Measured between 3 V and -3 V points on the output waveform (EIA/TIA-232-E conditions).

TYPICAL CHARACTERISTICS[†]

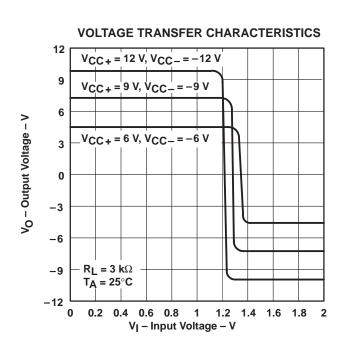


Figure 2

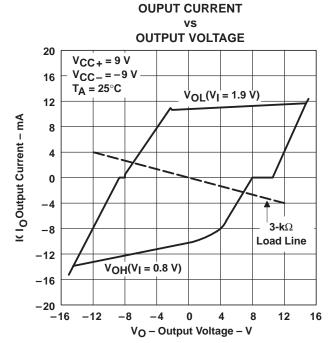
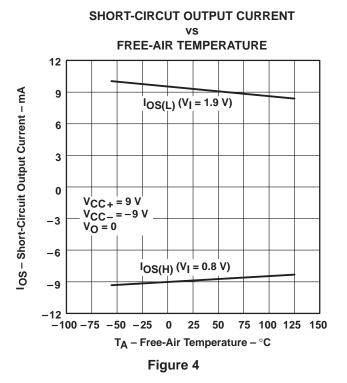
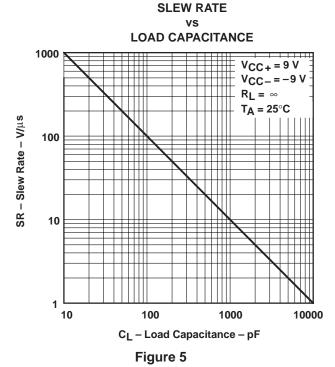
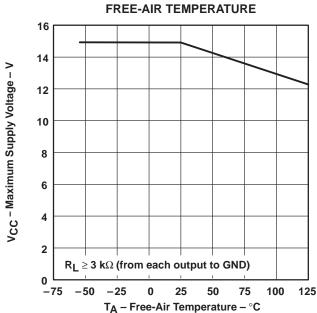




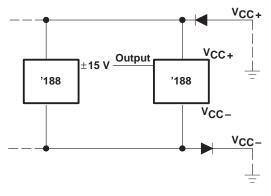
Figure 3

† Data for temperatures below 0°C and above 70°C are applicable to SN55188 circuit only.

THERMAL INFORMATION[†]

MAXIMUM SUPPLY VOLTAGE vs




Figure 6

† Data for temperatures below 0°C and above 70°C are applicable to SN55188 circuit only.

APPLICATION INFORMATION

Figure 7. Logic Translator Applications

Diodes placed in series with the V_{CC+} and V_{CC-} leads will protect the SN55188/SN75188 in the fault condition in which the device outputs are shorted to \pm 15 V and the power supplies are at low voltage and provide low-impedance paths to ground.

Figure 8. Power Supply Protection to Meet Power-Off Fault Conditions of ANSI EIA/TIA-232-E

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated