

PART NUMBER 74ALS34N-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

PART NUMBER 74ALS34N

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

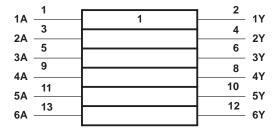
 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

- Noninverters
- Package Options Include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

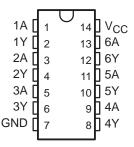
description

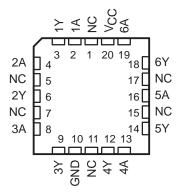

These devices contain six independent noninverters. They perform the Boolean function Y = A.

The SN54ALS34 and SN54AS34 are characterized for operation over the full military temperature range of -55° C to 125° C. The SN74ALS34 and SN74AS34 are characterized for operation from 0° C to 70° C.

FUNCTION TABLE (each buffer)

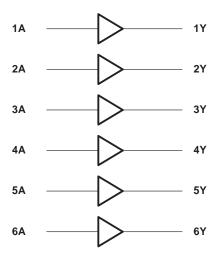
INPUT	OUTPUT
Α	Υ
Н	Н
L	L


logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

SN54ALS34, SN54AS34 . . . J PACKAGE SN74ALS34, SN74AS34 . . . D OR N PACKAGE (TOP VIEW)



SN54ALS34, SN54AS34 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC}	7 V
Input voltage	7 V
Operating free-air temperature range: SN54ALS34	−55°C to 125°C
SN74ALS34	0°C to 70°C
Storage temperature range	-65°C to 150°C

recommended operating conditions

		SN54ALS34			SI	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	Oitii
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
IOH	High-level output current			-0.4			-0.4	mA
lOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SN	SN54ALS34			SN74ALS34			
PARAMETER	1231 00	INDITIONS	MIN	TYP [†]	MAX	MIN	TYP†	MAX	UNIT	
VIK	V _{CC} = 4.5 V,	I _I = -18 mA			-1.2			-1.2	V	
Vон	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V _{CC} -2			V	
VOL	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	- V	
VOL	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 8 \text{ mA}$					0.35	0.5		
lį	$V_{CC} = 5.5 \text{ V},$	V _I = 7 V			0.1			0.1	mA	
lіН	$V_{CC} = 5.5 \text{ V},$	$V_{ } = 2.7 \text{ V}$			20			20	μΑ	
Ι _Ι L	$V_{CC} = 5.5 V,$	V _I = 0.4 V			-0.1			-0.1	mA	
10 [‡]	$V_{CC} = 5.5 \text{ V},$	$V_0 = 2.25 \text{ V}$	-30		-112	-30		- 112	mA	
IССН	$V_{CC} = 5.5 \text{ V},$	V _I = 4.5 V		3.1	5		3.1	5	mA	
^I CCL	$V_{CC} = 5.5 V$,	$V_I = 0 V$		5	8		5	8	mA	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics (see Note 1)

•	•	•								
			$V_{CC} = 5 V$,	۷٥						
			$C_L = 50 \text{ pF}, \qquad C_L = 50 \text{ pF},$		F,					
PARAMETER	FROM	то	$R_L = 500 \Omega$,	RL	= 500	Ω,		UNIT		
PARAMETER	(INPUT) (OUTPUT)	(INPUT)		(INPUT) (OUTPUT)	(OUTPUT) $T_A = 25^{\circ}C$	$T_A = MIN \text{ to } MAX$				ONII
			'ALS34	SN54A	LS34	SN74A	LS34	1		
			TYP	MIN	MAX	MIN	MAX	1		
t _{PLH}	Α	V	9.4	4	18	4	15	ns		
t _{PHL}] ^	l '	5	1	12	1	10	1 115		

NOTE 1: Load circuit and voltage waveforms are shown in Section 1 of ALS/AS Logic Data Book, 1986.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted),

Supply voltage, V _{CC}		 	 7 V
Input voltage		 	 7 V
Operating free-air temperature range			
	SN74AS34	 	 0°C to 70°C
Storage temperature range		 	 -65°C to 150°C

recommended operating conditions

		SN54AS34		S	UNIT			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
٧ıH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
IOH	High-level output current			-2			-2	mA
lOL	Low-level output current			20			20	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS		SN54AS34			SI			
PARAMETER	I EST CON	ONS	MIN	TYP [†]	MAX	MIN	TYP†	MAX	UNIT
VIK	$V_{CC} = 4.5 \text{ V},$	I _I = -18 mA			-1.2			-1.2	V
Voн	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -2 \text{ mA}$	V _{CC} -2			V _{CC} -2			V
V _{OL}	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 20 \text{ mA}$		0.35	0.5		0.35	0.5	V
lį	$V_{CC} = 5.5 \text{ V},$	V _I = 7 V			0.1			0.1	mA
liΗ	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20			20	μΑ
կլ	$V_{CC} = 5.5 \text{ V},$	$V_{ } = 0.4 \text{ V}$			-0.1			-0.1	mA
1O]	$V_{CC} = 5.5 \text{ V},$	V _O = 2.25 V	-30		-112	-30		- 112	mA
ІССН	$V_{CC} = 5.5 \text{ V},$	V _I = 4.5 V		7.4	12		7.4	12	mA
^I CCL	V _{CC} = 5.5 V,	V _I = 0 V		21.3	34.6		21.3	34.6	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics (see Note 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _C C _L R _L T _A	V, AS34	UNIT		
			MIN	MAX	MIN	MAX	
^t PLH	A	٧	1	6.5	1	5.5	ns
t _{PHL}	^	'	1	7	1	6	113

NOTE 2: Load circuit and voltage waveforms are shown in Section 1 of ALS/AS Logic Data Book, 1986.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated