

PART NUMBER 74LS652NS

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

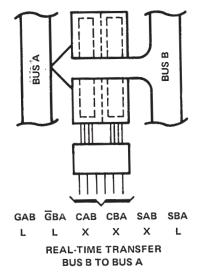
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

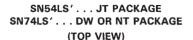
Qualified Suppliers List of Distributors (QSLD)

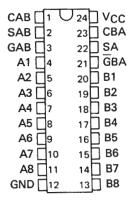
 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

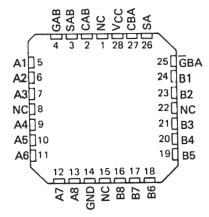
The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

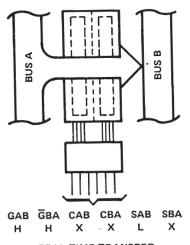

SDLS191 - JANUARY 1981 - REVISED MARCH 1988


- Bus Transceivers/Registers
- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- Choice of True and Inverting Data Paths
- Choice of 3-State or Open-Collector Outputs to A Bus
- Dependable Texas Instruments Quality and Reliability

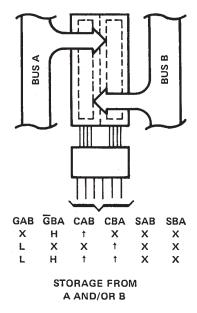

DEVICE	A OUTPUT	B OUTPUT	LOGIC
'LS651	3-State	3-State	Inverting
'LS652	3-State	3-State	True
'LS653	Open-collector	3-State	Inverting

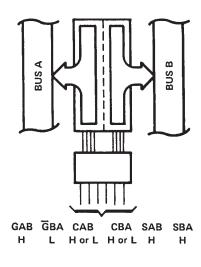
description


These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Enable GAB and $\overline{G}BA$ are provided to control the transceiver functions. SAB and SBA control pins are provided to select whether realtime or stored data is transferred. A low input level selects real-time data, and a high selects stored data. The following examples demonstrate the four fundamental bus-management functions that can be performed with the 'LS651, 'LS652, and 'LS653.



SN54LS'...FK PACKAGE
(TOP VIEW)


NC - No internal connection



REAL-TIME TRANSFER BUS A TO BUS B

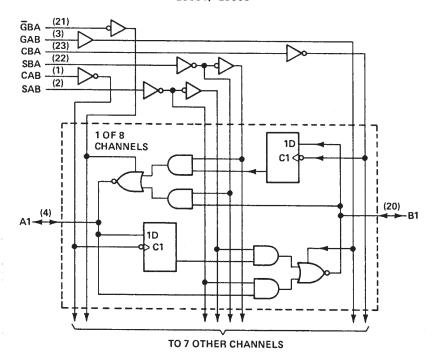
SDLS191 - JANUARY 1981 - REVISED MARCH 1988

TRANSFER STORED DATA TO A AND/OR B

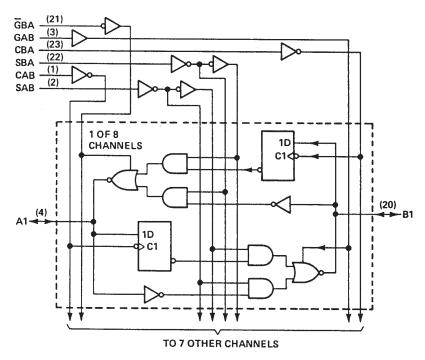
Data on the A or B data bus, or both, can be stored in the internal D flip-flop by low-to-high transitions at the appropriate clock pins (CAB or CBA) regardless of the select or enable control pins. When SAB or SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling GAB and $\overline{G}BA$. In this configuration each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high impedance, each set of bus lines will remain at its last state.

The SN54LS651 through SN54LS653 are characterized for operation over the full military temperature range of $-55\,^{\circ}$ C to 125 °C. The SN74LS651 through SN74LS653 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE


		INP	UTS			DAT	A I/O*	OPERATION OR FUNCTION					
GAB	ĞВА	CAB	CBA	SAB	SBA	A1 THRU A8	B1 THRU B8	'LS651, 'LS653	'LS652, 'LS654				
L	Н	H or L	H or L	Х	Х	Innut	lanut	Isolation	Isolation				
L	Н	†	1	Х	Х	Input	Input	Store A and B Data	Store A and B Data				
Х	Н	1	H or L	Х	Х	Input	Not specified	Store A, Hold B	Store A, Hold B				
Н	Н	1	†	Х	Х	Input	Output	Store A in both registers	Store A in both registers				
L	Х	H or L	Ť	Х	Х	Not specified	Input	Hold A, Store B	Hold A, Store B				
L	L.	1	†	Х	Х	Output	Input	Store B in both registers	Store B in both registers				
L	L	×	X	Х	L	Output	Input	Real-Time B Data to A Bus	Real-Time B Data to A Bus				
L	L	×	H or L	X	Н	Output	mput	Stored B Data to A Bus	Stored B Data to A Bus				
Н	Н	×	X	L	Х	Input	Output	Real-Time A Data to B Bus	Real-Time A Data to B Bus				
Н	Н	H or L	X	Н	Х	Прис	Output	Stored A Data to B Bus	Stored A Data to B Bus				
Н.	· L	Horl	H or L	Н	н	Output	Output	Stored A Data to B Bus and	Stored A Data to B Bus and				
						Cutput	Output	Stored B Data to A Bus	Stored B Data to A Bus				

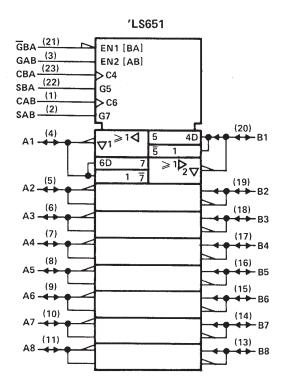
^{*} The data output functions may be enabled or disabled by various signals at the GAB and GBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

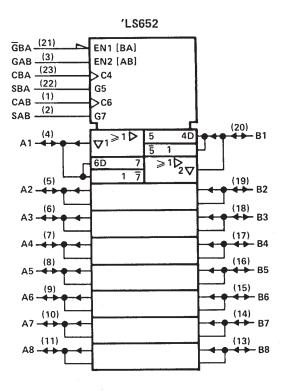


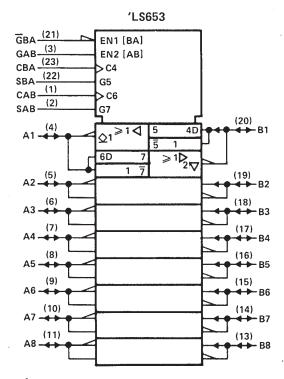
logic diagrams (positive logic)

'LS651, 'LS653

'LS652




Pin numbers shown are for DW, JT or NT packages.



SDLS191 - JANUARY 1981 - REVISED MARCH 1988

logic symbols†

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, JT, or NT packages.

SN54LS651, SN54LS652, SN74LS651, SN74LS652 OCTAL BUS TRANSCEIVERS AND REGISTERS

SDLS191 - JANUARY 1981 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC	/
Input voltage: Control inputs	/
I/O ports	
Operating free-air temperature range: SN54LS651, SN54LS652 $-$ 55°C to 125°	С
SN74LS651, SN74LS652	C
Storage temperature range $\dots -65^{\circ}C$ to 150°	С

recommended operating conditions

				N54LS6 N54LS6			N74LS6 N74LS6		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	5,5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.7			0.8	V
ІОН	High-level output current				- 12			15	mA
ار ام	Low-level output current				12			24	mA
		CBA or CAB high	15			15			
t _w	Pulse duration	CBA or CAB low	15			15			ns
		Data high or low	15			15			
t _{su}	Setup time before CAB [↑] or CBA [↑]	A or B	15			15			ns
th	Hold time after CAB† or CBA†	A or B	0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

P.A	ARAMETER	Т	EST CONDITIO	nst	Si	N54LS65	52	SN74LS651 SN74LS652 MIN TYP‡ MAX		UNIT		
Vus		V MIN	1 10 - 1		MIN	TYP‡		MIN	TYPŦ			
VIK		V _{CC} = MIN,	I _I = - 18 mA		<u> </u>		- 1.5			- 1.5	V	
		V _{CC} = MIN,	V _{IH} = 2 V,	I _{OH} = - 3 mA	2.4	3.4		2.4	3.4		1	
Vон	voн	$V_{II} = MAX,$	- 111	I _{OH} = - 12 mA	2						V	
		1		l _{OH} = - 15 mA				2				
VOL		V _{CC} = MIN,	$V_{IH} = 2 V$	IOL = 12 mA		0.25	0.4		0.25	0.4	\ \	
-02		VIL = MAX,		IOL = 24 mA					0.35	0.5	1 °	
1,	Control inputs A or B ports	V _{CC} = MAX,	V _I = 7 V				0.1			0.1		
''		$V_{CC} = MAX$,	V ₁ = 5.5 V				0.1			0.1	mA	
ΙΉ	Control inputs	V MAY	V = 0.7.V				20			20		
'IH	A or B ports¶	VCC = MAX,	V = 2.7 V	V _I = 2.7 V			20			20	μA	
1	Control inputs	VMAY	V = 0.4 V				- 0.4			- 0.4	mA	
IIL	A or B ports¶	V _{CC} = MAX,	V j = 0.4 V				- 0.4			- 0.4		
los§		V _{CC} = MAX,	V _O = 0 V		- 40		- 225	- 40		- 225	mA	
				Outputs high		95	145		95	145		
	LS651			Outputs low		103	165		103	165	1	
las		\/a== MAY		Outputs disabled		103	165		103	165	mA	
Icc	LS652	V _{CC} = MAX		Outputs high		95	145		95	145		
				Outputs low		103	165		103		1	
				Outputs disabled		120	180		120	180	1	

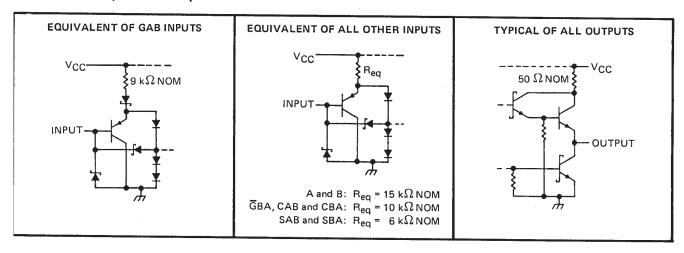
[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $[\]P$ For I/O ports, the parameters I $_{IH}$ and I $_{IL}$ include the off-state output current.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C. $^{\$}$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SN54LS651, SN54LS652, SN74LS651, SN74LS652 OCTAL BUS TRANSCEIVERS AND REGISTERS

SDLS191 - JANUARY 1981 - REVISED MARCH 1988


switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER	FROM	то	TEST COND	ITIONS		'LS651		,	LS652		
	(INPUT)	(OUTPUT)	1 L31 CONE	71110113	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
^t PLH	Clock	Bus			-	14	24		15	25	ns
tPHL_	Glock	Dus				23	35		24	36	ns
^t PLH	Bus	Bus				9	18		12	18	ns
^t PHL_	503	Dus				20	30		13	20	ns
^t PLH	Select, with					31	.47		23	35	ns
tPHL	bus input high [†] Select, with bus input	B	R _L = 667 Ω,	C _L = 45 pF,		22	33		21	32	ns
^t PLH		Bus	See Note 2	-		23	35		33	50	ns
^t PHL	low†					19	30		15	23	ns
^t PZH	Ğва	A Bus				29	44		30	45	ns
^t PZL		A Bus				40	60		36	54	ns
^t PZH	GAB	B Bus				19	29		20	30	ns
^t PZL	GAB .	B Bus				26	40		25	38	ns
^t PHZ	Ğва	A Bus			1	25	. 38		25	38	ns
^t PLZ	GBA	A Bus	$R_L = 667 \Omega$,	CL = 5 pF,		19	30		19	30	ns
^t PHZ	GAB	B Bus	See Note 2			25	38		25	38	ns
^t PLZ	GAB	Bus				19	30		19	30	ns

tpLH = propagation delay time, low-to-high-level output.

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

tpHL = propagation delay time, high-to-low-level output

tpzH = output enable time to high level

tpzL = output enable time to low level

tpHZ = output disable time from high level

tpLZ = output disable time from low level tpLZ = output disab

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC	7 V
Input voltage: All inputs and A I/O ports	
B I/O ports	5.5 V
Operating free-air temperature range: SN54LS653	55°C to 125°C
SN74LS653	0°C to 70°C
Storage temperature range	65°C to 150°C

recommended operating conditions

			SN54LS653 SN74LS653		UNIT				
			MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.7			8.0	V
Vон	High-level output voltage	A ports			5.5			5.5	V
ЮН	High-level output current	B ports		,	- 12			– 15	mA
IOL	Low-level output current				12			24	mA
		CBA or CAB high	15			15			
t_W	Pulse duration	CBA or CAB low	30			30			ns
		Data high or low	30			30			
t _{su}	Setup time before CAB† or CBA†	A or B	15			15			ns
t _h	Hold time after CAB† or CBA†	A or B	0			0			ns
TA	Operating free-air temperature		– 5 5		125	0		70	°C

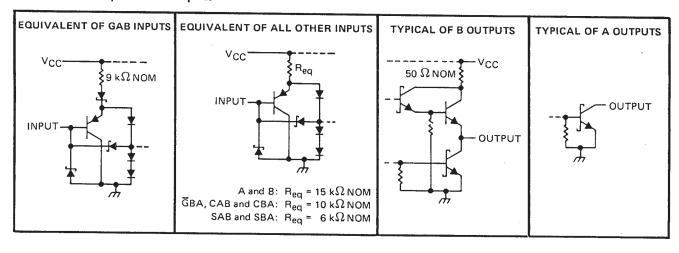
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	Т	TEST CONDITIONS [†]			SN54LS653			SN74LS653			
					MIN	TYP‡	MAX	MIN	TYP‡	MAX		
VIK		V _{CC} = MIN,	I ₁ = - 18 mA				- 1.5			- 1.5	V	
		V _{CC} = MIN,	V _{IH} = 2 V,	I _{OH} = - 3 mA	2.4	3.4		2.4	3.4			
Voн	B ports	VIL = MAX		I _{OH} = - 12 mA	2						V	
				IOH = - 15 mA				2				
ЮН	A ports	V _{CC} = MIN,	$V_{OH} = 5.5 V$				0.1			0.1	mA	
VOL		VCC = MIN,	V _{IH} = 2 V,	IOL = 12 mA		0.25	0.4		0.25	0.4	V	
VOL		VIL = MAX		IOL = 24 mA					0.35	0.5	1 *	
· II	Control inputs	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1 mA		
''	A or B ports	V _{CC} = MAX,	V ₁ = 5.5 V				0.1			0.1		
Itн	Control inputs	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μΑ	
יוא H	A or B ports	VCC - WAX,	V - 2.7 V				20			20	μΑ.	
IIL	Control inputs	V _{CC} = MAX,	$V_1 = 0.4 \ V$				- 0.4			-0.4	mA	
11	A or B ports¶	VCC - WAX,	1, 3				- 0.4			- 0.4]	
los§	B ports	V _{CC} = MAX,	V _O = 0 V		- 40		- 225	- 40		- 225	mA	
				Outputs high		95	145		95	145		
	LS653			Outputs low		103	165		103	165		
Icc		V _{CC} = MAX		Outputs disabled		103	165		103	165	mA	
.00	ĺ	100 1117		Outputs high		95	145		95	145] '''	
	LS654			Outputs low		105	170		105	105 170		
				Outputs disabled		120	180		120	180		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $[\]P$ For I/O ports, the parameters $I_{\mbox{\scriptsize IH}}$ and $I_{\mbox{\scriptsize IL}}$ include the off-state output current.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.


Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, T_A = 25 °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	СВА	A Bus		1	25	38	
tpHL	CBA	A bus			26	39	ns
tPLH	CAB	B Bus			15	23	
tPHL_	0,12	D bus			24	36	ns
^t PLH	A Bus	B Bus			10	18	
t _{PHL}	/ Jul	A Bus			20	30	ns
t _{PLH}	B Bus		1		21	32	
^t PHL	2 200	A bus			16	24	ns
^t PLH	SBA†	A Bus	$R_L = 667 \Omega, \qquad C_L = 45 pF,$		38	57	
[`] ^t PHL	(with B high)		See Note 2		26	39	ns
^t PLH	SBA [†]		7		34	51	
[†] PHL	(with B low)	A Bus			23	35	ns
^t PLH	SAB [†]		7		32	48	ns
^t PHL	(with A high)	B Bus			22	33	
tPLH	SAB [†]		†				
t _{PHL}	(with A low)	B Bus			24	36	ns
t _{PLH}			1		20	30	
tPHL	Ğва	A Bus			37	35 55	ns
^t PZH					19	29	
tPZL	GAB	B Bus	$R_L = 667 \Omega, C_L = 5 pF,$		25	38	ns
tPHZ			See Note 2		26	39	
tPLZ	GAB	B Bus	1		19	29	ns

[†]These parameters are measured with the internal output state of the storage register opposite to that of the bus input. NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

schematics of inputs and outputs

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated