

PART NUMBER 74S201JR-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

PART NUMBER 74S201J

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

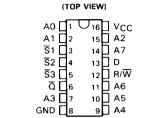
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.


Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

STATIC RANDOM-ACCESS MEMORIES

- Static Fully Decoded RAM's Organized as 256 Words of One Bit Each
- Schottky-Clamped for High Performance
- Choice of Three-State or Open-Collector Outputs
- Compatible with Most TTL and I²L Circuits
- Chip-Select Input Simplify External Decoding
- Typical Performance:

Read Access Time . . . 42 ns Power dissipation . . . 500 mW

SN74S201, SN74S301 . . . J OR N PACKAGE

description

These 256-bit active-element memories are monolithic transistor-transistor logic (TTL) arrays organized as 256 words of one bit. They are fully decoded and have three chip-select inputs to simplify decoding required to achieve expanded system organizations.

write cycle

The information applied at the data input is written into the selected location when the chip-select inputs and the write-enable input are low. While the write-enable input is low, the 'S201 outputs are in the high-impedance state and the 'S301 outputs are off. When a number of outputs are bus-connected, this high-impedance or off state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up.

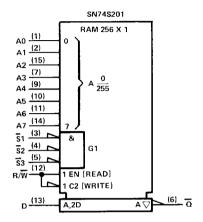
read cycle

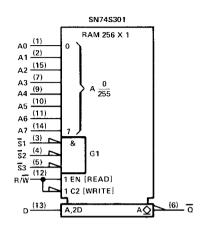
The stored information (complement of information applied at the data input during the write cycle) is available at the output when the write-enable input is high and the three chip-select inputs is low. When any one of the chip-select inputs are high, the 'S201 outputs will be in the high-impedance state and the 'S301 outputs will be off.

FUNCTION TABLE

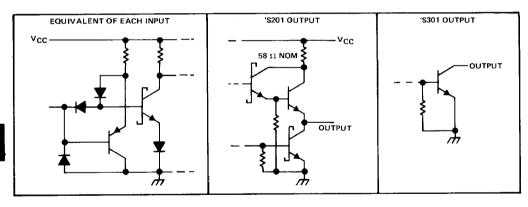
	INPUTS		'S201	'S301		
FUNCTION	CHIP SELECT WRITE ENABLE S R/W		OUTPUT (Q)	OUTPUT (Q)		
Write	L	L	High Impedance	Off		
Read		Н	Complement of Data Entered	Complement of Data Entered		
Inhibit	н	X	High Impedance	Off		

H = high level, L = low level, X = irrelevant


For chip-select: L \equiv all $\overline{S}i$ inputs low, H \equiv one or more $\overline{S}i$ inputs high


5

) (၁



logic symbols

schematics of inputs and outputs

5

KAIVI

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	V
Input voltage	
Off-State output voltage	٧
Operating free-air temperature range	°C
Storage temperature range65°C to 150°C	°C

SN74S201, SN74S301 256-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

recommended operating conditions

		SN74S201		SN74S301			UNIT	
		MIN	NOM	MAX	MiN	NOM	MAX	UNIT
Supply voltage, V _{CC} (see Note 1)		4.75	5	5.25	4.75	5	5.25	V
High-level ou	tput voltage, VOH						5.5	V
High-level ou	tput current, IOH			- 10.3				mA
Low-level out	tput current, IOL			16			16	mA
Width of writ	te pulse (write enable low), tw(wr)	65			65		_	ns
	Address before write pulse, t _{su(ad)}	01			O1			
Setup time	Data before end of write pulse, t _{su(da)}	65↑			65↑			ns
	Chip-select before end of write pulse, t _{Su} (\$\overline{S}\$)	65↑			65↑			
	Address after write pulse, th(ad)	01			01			
Hold time	Data after write pulse, th(da)	01			01			ns
	Chip-select after write pulse, th(S)	01			01			
Operating fre	e-air temperature, TA	0		70	0		70	°C

^{†4}The arrow indicates the transition of the write-enable input used for reference: I for the low-to-high transition, I for the high-to-low transition.

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		acuproset		'S201			'S301		
1	PARAMETER	TEST CONDITIONS		TYP [‡]	MAX	MIN TYP [‡]		MAX	UNIT
V _{\$H}	High-level input voltage		2			2			٧
VIL	Low-level input voltage				0.8			0.8	V
VIK	Input clamp voltage	$V_{CC} = MIN$, $I_{\parallel} = -18 \text{ mA}$			- 1.2			- 1.2	٧
Voн	High-level output voltage	V_{CC} - MIN, V_{IH} = 2 V, V_{IL} = 0.8 V, I_{OH} = MAX	2.4						٧
VOL	Low-level output voltage	VCC = MIN, VIH = 2 V, IOL = 16 mA			0.45			0.45	٧
ЮН	High-level output current	$V_{CC} = MIN$, $V_{IH} = 2 \text{ V}$, $V_{O} = 2.4 \text{ V}$ $V_{IL} = 0.8 \text{ V}$ $V_{O} = 5.5 \text{ V}$	_					40 100	μΑ
lozh	Off-state output current, high-level voltage applied	$V_{CC} = MAX, V_{IH} = 2 V,$ $V_{IL} = 0.8 V, V_{OH} = 2.4 V$			40				μА
IOZL	Off-state output current, low-level voltage applied	$V_{CC} = MAX$, $V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $V_{OL} = 0.5 V$			-40				μА
l _j	Input current at maximum input voltage	$V_{CC} = MAX$, $V_1 = 5.5 V$			1			1	mA
ηн ·	High-level input current	$V_{CC} = MAX$, $V_{I} = 2.7 V$			25			25	μΑ
IIL .	Low-level input current	V _{CC} - MAX, V _I = 0.5 V			- 250			- 250	μΑ
los	Short-circuit output current §	V _{CC} - MAX	- 30		- 100				mA
ICC	Supply current	V _{CC} = MAX, See Note 2		100	140	<u> </u>	100	140	mA

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§]Duration of the short circuit should not exceed one second.

NOTE 2: ICC is measured with all chip-select inputs grounded, all other inputs at 4.5 V, and the output open.

'S201 switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MiN	TYP [‡]	MAX	UNIT
ta(ad)	ta(ad) Access time from address ta(S) Access time from chip select (select time) tsR Sense recovery time		C ₁ = 30 pF,		42	65	ns
ta(S)			See Note 3		13	30	ns
tSR					20	40	ns
tPXZ	Disable time from high or low level	From S	$C_{L} = 5 pF$,				ns
	From R/W		See Note 3			20	113

'S301 switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN TYP‡	MAX	UNIT
ta(ad) Access time from address		C _I = 30 pF,	42	65	ns	
ta(S)	ta(S) Access time from chip enable (enable time) tsR Sense recovery time		$R_{L1} = 300 \Omega,$ $R_{L2} = 600 \Omega,$	13	30	ns
^t SR				20	40	ns
tPLH	Propagation delay time, low-to-high-level	From S	See Note 3	8	20	ns
	utput (disable time) From R/W		See Note S	15	35	1 "

 $^{\ddagger}All$ typical values are at VCC = 5 V, TA = 25 °. NOTE 2: Load circuits and voltage waveforms are shown in Section 1.