

PART NUMBER 74S40J-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

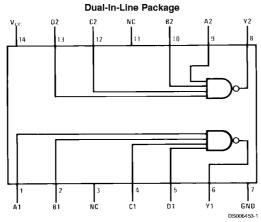
- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.


DM74S40

Dual 4-Input NAND Buffers

General Description

This device contains two independent gates each of which performs the logic NAND function.

Connection Diagram

Order Number DM54S40J, DM54S40W or DM74S40N See Package Number J14A, N14A or W16B

Function Table

$Y = \overline{ABCD}$

	Output			
Α	В	С	D	Υ
Х	Х	Х	Г	Н
Х	X	L	Х	Н
X	L	Х	Х	Н
L	X	Х	Х	Н
н	Н	Н	Н	L

H = High Logic Level

L = Low Logic Level X = Either Low or High Logic Level

Absolute Maximum Ratings (Note 1)

DM54S DM74S -55°C to +125°C 0°C to +70°C -65°C to +150°C

Supply Voltage Input Voltage 7V 5.5V

Storage Temperature Range

Operating Free Air Temperature Range

Recommended Operating Conditions

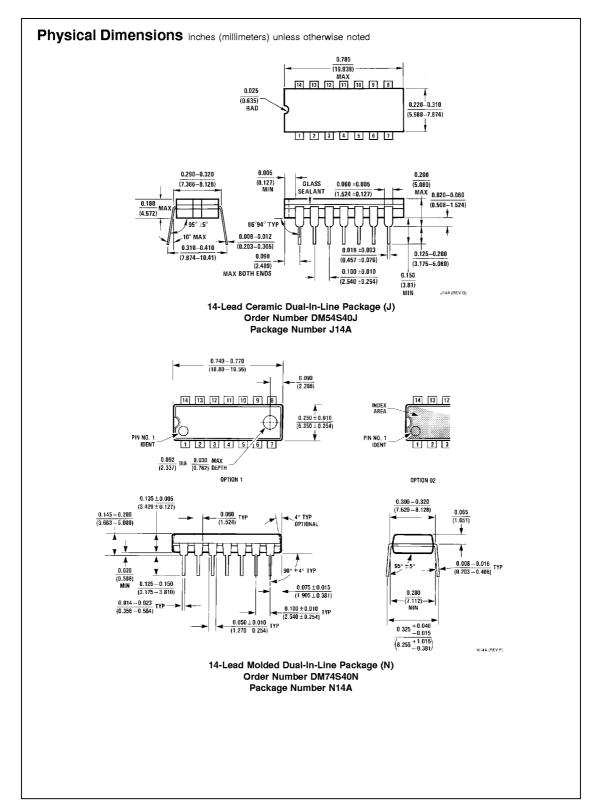
Symbol	Parameter	DM54S40			DM74S40			Units
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	٧
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.8			0.8	V
I _{OH}	High Level Output Current			-3			-3	mA
I _{OL}	Low Level Output Current			60			60	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

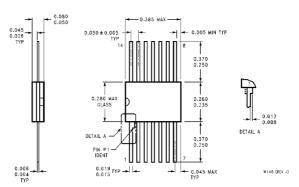
Electrical Characteristics

over recommended operating free air temperature (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
V _I	Input Clamp Voltage	V _{CC} = Min, I _I = -18 mA				-1.2	٧
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max	DM54	2.5	3.4		٧
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max	•			0.5	٧
	Voltage	V _{IH} = Min					
I _I	Input Current @ Max	V _{CC} = Max, V _I = 5.5V				1	mA
	Input Voltage						
I _{IH}	High Level Input Current	V _{CC} = Max, V _I = 2.7V				100	μΑ
I _{IL}	Low Level Input Current	V _{CC} = Max, V _I = 0.5V				-4	mA
los	Short Circuit	V _{CC} = Max	DM54	-50		-225	mA
	Output Current	(Note 3)	DM74	-50		-225	
I _{CCH}	Supply Current with	V _{CC} = Max	•		10	18	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			25	44	mA
	Outputs Low						


Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$


	Parameter					
Symbol		C _L = 50 pF		C _L = 150 pF		Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	2	6.5	3	9	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	2	6.5	3	9	ns
	High to Low Level Output					

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W) Order Number DM54S40W Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Corporation Americas Customer Response Center

Tel: 1-888-522-5372

Fairchild Semiconductor

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 8 141-35-0

English Tel: +44 (0) 1 793-85-68-56

Italy Tel: +39 (0) 2 57 5631

Fairchild Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: +852 2737-7200 Fax: +852 2314-0061

National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179