

PART NUMBER 93L422ADMB-ROCS

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

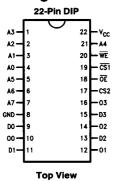
93L422A

256 x 4-Bit Static Random Access Memory

General Description

The 93L422A is a 1024-bit read/write Random Access Memory (RAM) organized 256 words by four bits. It is designed for high speed cache, control and buffer storage applications. The device includes full on-chip decoding, separate Data input and non-inverting Data output, as well as two Chip Select Lines.

Features

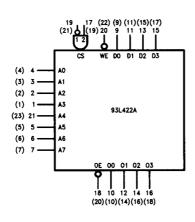

- New design to replace old 93422/93L422
- Improved ESD thresholds
- Alpha hard without die coat
- Commercial address access time 93L422A

25 ns

- Fully TTL compatible
- Features TRI-STATE® outputs
- Power dissipation decreases with increasing temperature

Pin Names

Connection Diagram


A0-A7	Address Inputs		
D0-D3	Data Inputs		
ŪS1	Chip Select Input (Active LOW)		
CS2	Chip Select Input (Active HIGH)		
WE	Write Enable Input (Active LOW)		
ŌĒ	Output Enable Input (Active LOW)		
00-03	Data Outputs		

TL/D/9996-3

Order Number 93L422ADC or 93L422APC See NS Package Number J22A* or N22A*

Optional Processing QR = Burn-In
*For most current package information, contact product marketing

Logic Symbol

5-20

5.0V ±5%

0°C to +75°C

Guaranteed Operating Ranges

Supply Voltage (V_{CC})

Case Temperature (T_C)

Absolute Maximum Ratings

Above which the useful life may be impaired

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Storage Temperature

-65°C to +150°C

Supply Voltage Range

-0.5V to +7.0V

input Voltage (DC) (Note 1)

 $-0.5\mbox{V}$ to $\mbox{V}_{\mbox{CC}}$

Input Current (DC) Voltage Applied to Outputs (Note 2) $-\,12$ mA to $+\,5.0$ mA -0.5V to +5.5V

Lead Temperature (Soldering, 10 sec.)

300°C

Maximum Junction Temperature (T_J)

+175°C

Output Current

+ 20 mA

DC Characteristics over operating temperature ranges (Note 3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VOL	Output LOW Voltage	V _{CC} = Min, I _{OL} = 8 mA		0.3	0.45	V
V _{IH}	Input HIGH Voltage	Guaranteed Input HIGH Voltage for All Inputs (Notes 4, 5 & 6)	2.1	-		
V _{IL}	Input LOW Voltage	Guaranteed Input LOW Voltage for All Inputs (Notes 4, 5 & 6)			0.8	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min, I_{OH} = -5.2V$	2.4			V
I _{IL}	Input LOW Current	V _{CC} = Max, V _{IN} = 0.4V		- 150	-300	μΑ
hн	Input HIGH Current	V _{CC} = Max, V _{IN} = 4.5V		1.0	40	μА
Інв	Input Breakdown Current	V _{CC} = Max, V _{IN} = V _{CC}		-110.	1.0	mA
V _{IC}	Input Diode Clamp Voltage	$V_{CC} = Max, I_{IN} = -10 \text{ mA}$		-1.0	-1.5	7. V
lozh	Output Current (HIGH Z)	V _{CC} = Max, V _{OUT} = 2.4V			50	μΑ
lozL		V _{CC} = Max, V _{OUT} = 0.5V			-50	μΑ
los	Output Current Short Circuit to Ground	V _{CC} = Max (Note 7)	-10		-70	mA
Icc	Power Supply Current	V _{CC} = Max, All Outputs Open, All Inputs = GND			80	mA

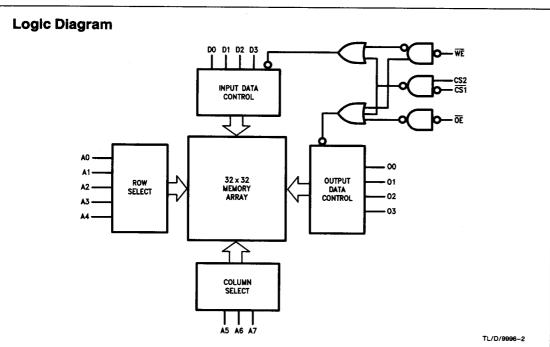
Symbol	Parameter	Conditions	Min	Max	Units
AD TIMING					
tACS	Chip Select Access Time			20	ns
^t zrcs	Chip Select to High Z	Figures		20	ns
t _{AOS}	Output Enable Access Time	3a, 3b, 3c		20	ns
t _{ZROS}	Output Enable to HIGH Z			20	ns
taa	Address Access Time (Note 8)			25	ns
RITE TIMING					
t _W	Write Pulse Width to Guarantee Writing (Note 9)		20		ns
twsp	Data Setup Time prior to Write		5		ns
twHD	Data Hold Time after Write		5		ns
[†] WSA	Address Setup Time prior to Write (Note 9)	Figure 4	5		ns
twha	Address Hold Time after Write		5		ns
twscs	Chip Select Setup Time prior to Write		5		ns
twncs	Chip Select Hold Time after Write		5		ns
tzws	Write Enable to Output Disable			20	ns
twn	Write Recovery Time			20	ns

Note 1: Either input voltage limit or input current limit sufficient to protecting inputs.

Note 2: Output current limit required.

Note 3: Typical values are at $V_{CC} = 5.0V$, $t_{C} = +25^{\circ}C$ and maximum loading.

Note 4: Static condition only.


Note 5: Functional testing done at input levels $V_{iL} = 0.45V$ (V_{OL} Max) and $V_{iH} = 2.4V$ (V_{OH} Min).

Note 6: AC testing done at input levels $V_{IH} = 3V$, $V_{IL} = 0V$.

Note 7: Short circuit to ground not to exceed one second; ground only one output at a time.

Note 8: The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern.

Note 9: t_W measured at t_{WSA} = Min. t_{WSA} measured at t_W = Min.

Truth Table

Inputs		Outputs			
ŌĒ	CS1	CS2	WE	TRI-STATE	Mode
X	н	×	X	HIGH Z	Not Selected
×	X	L	X	HIGH Z	Not Selected
L	L	H	Н	D _{OUT}	READ
X	L	н	Ŀ	HIGH Z	WRITE
Н	X	x	X	HIGH Z	Output Disabled

H = HIGH Voltage Level 2.4V L = LOW Voltage Level 0.45V X = Don't Care HIGH or LOW

Functional Description

The 93L422A is a fully decoded 1024-bit Random Access Memory organized 256 words by four bits. Word selection is achieved by means of an 8-bit address A0-A7.

Two Chip Select inputs, inverting and non-inverting, are provided for logic flexibility. For larger memories, the fast chip select access time permits the decoding of the chip selects from the address without increasing address access time.

The read and write operations are controlled by the state of the active LOW Write Enable \overline{WE} input. When \overline{WE} is held

LOW and the chip is selected, the data at D0-D3 is written into the address location. Since the write function is leveltriggered, data must be held stable for at least twsp (Min) plus tw (Min) plus twHD (Min) to insure a valid write. To read, WE is held high, the chip is selected, and the data is transferred to the outputs (O0-O3).

The 93L422A has TRI-STATE outputs which provide active pull-ups when enabled and high output impedance when disabled. This allows optimization of word expansion in bus organized systems.

93L422A

HIGH Z = High-Impedance

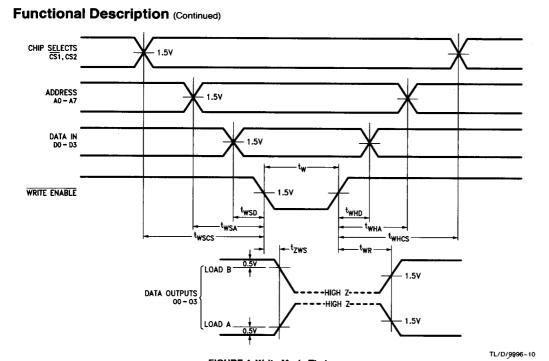


FIGURE 4. Write Mode Timing

Note 1: Timing Diagram represents one solution which results in an optimium cycle time. Timing may be changed to fit various applications as long as the worst case limits are not violated.

Note 2: Input voltage levels for worst case AC test are 3.0V-0V.

5