

# PART NUMBER DM7411N-ROCV

# Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

## **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
  - Class Q Military
  - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.



# **DM7411**

# Triple 3-Input AND Gate

This device contains three independent gates with three data inputs each which perform the logic AND function.

# Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

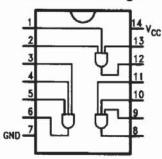
## **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
  - Class Q Military
  - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
  - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.




# DM7411 Triple 3-Input AND Gate

# **General Description**

This device contains three independent gates with three data inputs each which perform the logic AND function.

# **Connection Diagram**





Order Number DM7411N NS Package Number N14A TL/F/9774-1

### **Absolute Maximum Ratings (Note)**

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V Input Voltage 5.5V

Operating Free Air

Temperature Range (DM74)

0°C to +70°C

Storage Temperature Range

-65°C to +150°C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operations.

# **Recommended Operating Conditions**

| Symbol          | Parameter                      |                                         | Units |      |    |
|-----------------|--------------------------------|-----------------------------------------|-------|------|----|
|                 |                                | Min                                     | Тур   | Max  |    |
| Vcc             | Supply Voltage                 | 4.75                                    | 5     | 5.25 | ٧  |
| V <sub>IH</sub> | High Level Input Voltage       | 2                                       |       |      | ٧  |
| V <sub>IL</sub> | Low Level Input Voltage        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       | 0.8  | V  |
| Гон             | High Level Output Current      |                                         |       | -0.4 | mA |
| loL             | Low Level Output Current       | 30                                      |       | 16   | mA |
| TA              | Free Air Operating Temperature | 0                                       |       | 70   | °C |

#### Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

| Symbol          | Parameter                            | Conditions                                      | Min   | Typ<br>(Note 1) | Max  | Units |
|-----------------|--------------------------------------|-------------------------------------------------|-------|-----------------|------|-------|
| Vı              | Input Clamp Voltage                  | $V_{CC} = Min, I_I = -12 mA$                    |       |                 | -1.5 | ٧     |
| V <sub>OH</sub> | High Level Output<br>Voltage         | $V_{CC} = Min, I_{OH} = Max,$<br>$V_{IL} = Max$ | 2.4   | 3.4             |      | ٧     |
| V <sub>OL</sub> | Low Level Output<br>Voltage          | $V_{CC} = Min, I_{OL} = Max,$<br>$V_{IH} = Min$ |       | 0.2             | 0.4  | ٧     |
| l <sub>1</sub>  | Input Current @ Max<br>Input Voltage | $V_{CC} = Max, V_I = 5.5V$                      |       |                 | 1    | mA    |
| Ήн              | High Level Input Current             | $V_{CC} = Max, V_1 = 2.4V$                      |       |                 | 40   | μΑ    |
| <u> </u>        | Low Level Input Current              | $V_{CC} = Max, V_1 = 0.4V$                      | eni.s |                 | -1.6 | mA    |
| los             | Short Circuit<br>Output Current      | V <sub>CC</sub> = Max<br>(Note 2)               | -18   |                 | -57  | mA    |
| Іссн            | Supply Current with<br>Outputs High  | V <sub>CC</sub> = Max                           |       |                 | 15   | mA    |
| ICCL            | Supply Current with<br>Outputs Low   | V <sub>CC</sub> = Max                           |       |                 | 24   | mA    |

# Switching Characteristics at V<sub>CC</sub> = 5V and T<sub>A</sub> = 25°C (See Section 1 for Test Waveforms and Output Load)

| Symbol           | Parameter                                          | Conditions                                       | Min | Max | Units |
|------------------|----------------------------------------------------|--------------------------------------------------|-----|-----|-------|
| t <sub>PLH</sub> | Propagation Delay Time<br>Low to High Level Output | C <sub>L</sub> = 15 pF,<br>R <sub>L</sub> = 400Ω |     | 27  | ns    |
| t <sub>PHL</sub> | Propagation Delay Time<br>High to Low Level Output |                                                  |     | 19  | ns    |

Note 1: All typicals are at  $V_{CC} = 5V$ ,  $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time.