

# 2K x 8 CMOS RAM

The HM-6516 is a CMOS 2048 x 8 Static Random Access Memory. Extremely low power operation is achieved by the use of complementary MOS design techniques. This low power is further enhanced by the use of synchronous circuit techniques that keep the active (operating) power low, which also gives fast access times. The pinout of the HM-6516 is the popular 24 pin, 8-bit wide JEDEC standard, which allows easy memory board layouts, flexible enough to accommodate a variety of PROMs, RAMs, EPROMs, and ROMs.

The HM-6516 is ideally suited for use in microprocessor based systems. The byte wide organization simplifies the memory array design, and keeps operating power down to a minimum, because only one device is enabled at a time. The address latches allow very simple interfacing to recent generation microprocessors which employ a multiplexed address/data bus. The convenient output enable control also simplifies multiplexed bus interfacing by allowing the data outputs to be controlled independent of the chip enable.

# Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

# **Quality Overview**

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
  - Class Q Military
  - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
  - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

## FOR REFERENCE ONLY



March 1997

## 2K x 8 CMOS RAM

## Features

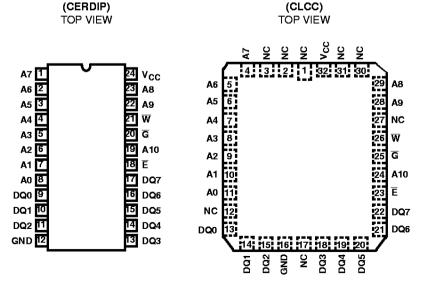
| Low Power Standby        | 275μW Max               |
|--------------------------|-------------------------|
| Low Power Operation      | 55mW/MHz Max            |
| Fast Access Time         | . 120/200ns <b>M</b> ax |
| Industry Standard Pinout |                         |
| Single Supply            | 5.0V V <sub>CC</sub>    |

- TTL Compatible
- · Static Memory Cells
- High Output Drive
- · On-Chip Address Latches
- · Easy Microprocessor Interfacing

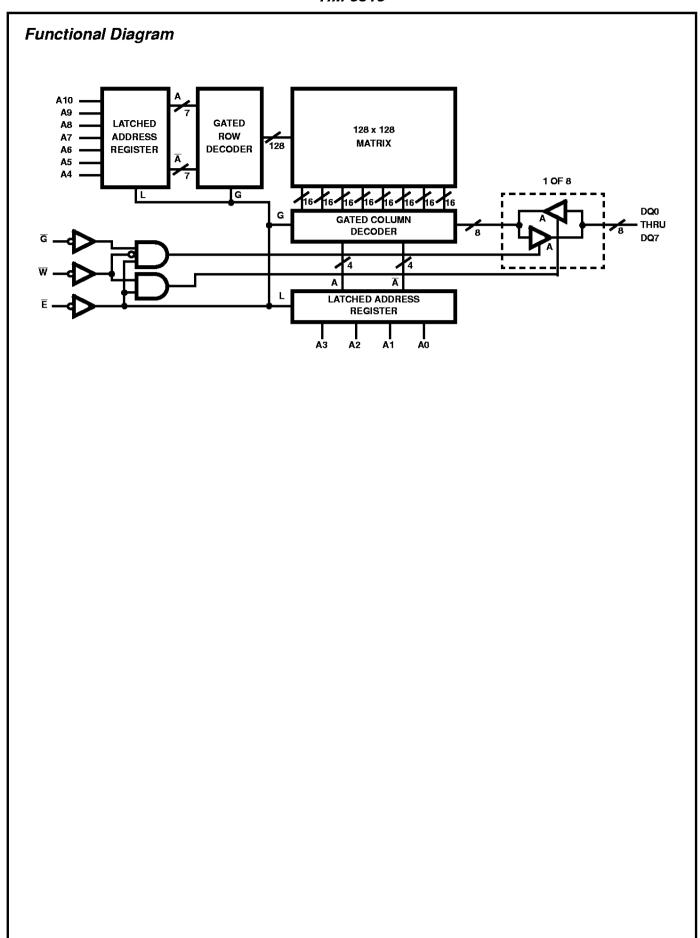
# Description

The HM-6516 is a CMOS 2048 x 8 Static Random Access Memory. Extremely low power operation is achieved by the use of complementary MOS design techniques. This low power is further enhanced by the use of synchronous circuit techniques that keep the active (operating) power low, which also gives fast access times. The pinout of the HM-6516 is the popular 24 pin, 8-bit wide JEDEC standard, which allows easy memory board layouts, flexible enough to accommodate a variety of PROMs, RAMS, EPROMs, and ROMs.

The HM-6516 is ideally suited for use in microprocessor based systems. The byte wide organization simplifies the memory array design, and keeps operating power down to a minimum, because only one device is enabled at a time. The address latches allow very simple interfacing to recent generation microprocessors which employ a multiplexed address/data bus. The convenient output enable control also simplifies multiplexed bus interfacing by allowing the data outputs to be controlled independent of the chip enable.


# Ordering Information

HM-6516


| 120ns       | 200ns      | TEMP. RANGE     | PACKAGE | PKG. NO. |
|-------------|------------|-----------------|---------|----------|
| HM1-6516B-9 | HM1-6516-9 | -40°C to +85°C  | CERDIP  | F24.6    |
| -           | 29102BJA   | -55°C to +125°C | JAN#    | F24.6    |
| 8403607JA   | 8403601JA  | -55°C to +125°C | SMD#    | F24.6    |
| -           | HM4-6516-9 | -40°C to +85°C  | CLCC    | J32.A    |
| 8403607ZA   | 8403601ZA  | -55°C to +125°C | SMD#    | J32.A    |

HM-6516

#### **Pinouts**



| PIN                  | DESCRIPTION            |
|----------------------|------------------------|
| NC                   | No Connect             |
| A0 - A10             | Address Inputs         |
| Ē                    | Chip Enable/Power Down |
| V <sub>SS</sub> /GND | Ground                 |
| DQ0 - DQ7            | Data In/Data Out       |
| v <sub>cc</sub>      | Power (+5V)            |
| W                    | Write Enable           |
| G                    | Output Enable          |



## **Absolute Maximum Ratings**

#### 

## Thermal Information

| Thermal Resistance                     | $\theta_{JA}$ | $\theta_{\rm JC}$                     |
|----------------------------------------|---------------|---------------------------------------|
| CERDIP Package                         | 48°C/W        | 8°C/W                                 |
| CLCC Package                           | 66°C/W        | 12°C/W                                |
| Maximum Storage Temperature Range      | 65            | <sup>D</sup> C to +150 <sup>O</sup> C |
| Maximum Junction Temperature           |               |                                       |
| Maximum Lead Temperature (Soldering 10 | Os)           | +300°C                                |

## **Operating Conditions**

#### Die Characteristics

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

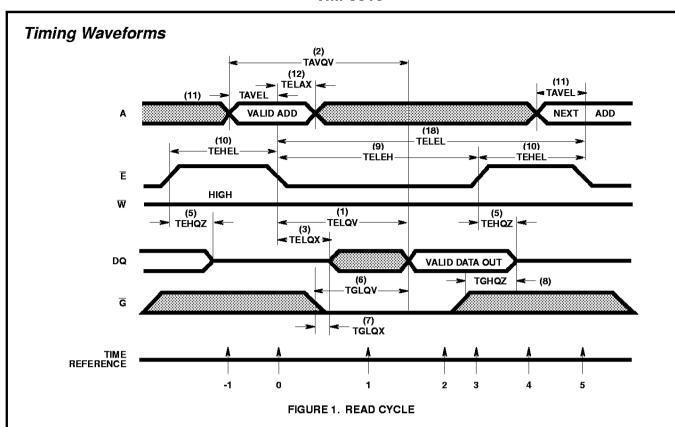
## DC Electrical Specifications $V_{CC} = 5V \pm 10\%$ ; $T_A = -40$ °C to +85°C (HM-6516B-9, HM-6516-9)

|                 |                                   | LIMITS               |                      |       |                                                                                              |  |
|-----------------|-----------------------------------|----------------------|----------------------|-------|----------------------------------------------------------------------------------------------|--|
| SYMBOL          | PARAMETER                         | MIN                  | MAX                  | UNITS | TEST CONDITIONS                                                                              |  |
| ICCSB           | Standby Supply Current            | -                    | 50                   | μΑ    | IO = 0mA, VI = V <sub>CC</sub> or GND,<br>V <sub>CC</sub> = 5.5V, HM-6516B-9                 |  |
|                 |                                   | -                    | 100                  | μΑ    | IO = 0mA, VI = V <sub>CC</sub> or GND,<br>HM-6516-9                                          |  |
| ICCOP           | Operating Supply Current (Note 1) | -                    | 10                   | mA    | $f = 1MHz$ , $IO = 0mA$ , $\overline{G} = V_{CC}$ , $V_{CC} = 5.5V$ , $VI = V_{CC}$ or $GND$ |  |
| ICCDR           | Data Retention Supply Current     | -                    | 25                   | μΑ    | $V_{CC}$ = 2.0V, IO = 0mA, VI = $V_{CC}$ or GND, $\overline{E}$ = $V_{CC}$ , HM-6516B-9      |  |
|                 |                                   | -                    | 50                   | μΑ    | $V_{CC}$ = 2.0V, IO = 0mA, VI = $V_{CC}$ or GND, $\overline{E}$ = $V_{CC}$ , HM-6516-9       |  |
| VCCDR           | Data Retention Supply Voltage     | 2.0                  | -                    | ٧     |                                                                                              |  |
| II              | Input Leakage Current             | -1.0                 | +1.0                 | μΑ    | $VI = V_{CC}$ or GND, $V_{CC} = 5.5V$                                                        |  |
| IIOZ            | Input/Output Leakage Current      | -1.0                 | +1.0                 | μΑ    | $VIO = V_{CC}$ or GND, $V_{CC} = 5.5V$                                                       |  |
| V <sub>IL</sub> | Input Low Voltage                 | -0.3                 | 0.8                  | V     | V <sub>CC</sub> = 4.5V                                                                       |  |
| V <sub>IH</sub> | Input High Voltage                | 2.4                  | V <sub>CC</sub> +0.3 | V     | V <sub>CC</sub> = 5.5V                                                                       |  |
| VOL             | Output Low Voltage                | -                    | 0.4                  | V     | IO = 3.2mA, V <sub>CC</sub> = 4.5V                                                           |  |
| VOH1            | Output High Voltage               | 2.4                  | -                    | V     | IO = -1.0mA, V <sub>CC</sub> = 4.5V                                                          |  |
| VOH2            | Output High Voltage (Note 2)      | V <sub>CC</sub> -0.4 | -                    | ٧     | $IO = -100\mu A, V_{CC} = 4.5V$                                                              |  |

# Capacitance $T_A = +25$ °C

| SYMBOL | PARAMETER                         | MAX | UNITS | TEST CONDITIONS                |
|--------|-----------------------------------|-----|-------|--------------------------------|
| CI     | Input Capacitance (Note 2)        | 8   | pF    | f = 1MHz, All measurements are |
| CIO    | Input/Output Capacitance (Note 2) | 10  | pF    | referenced to device GND       |

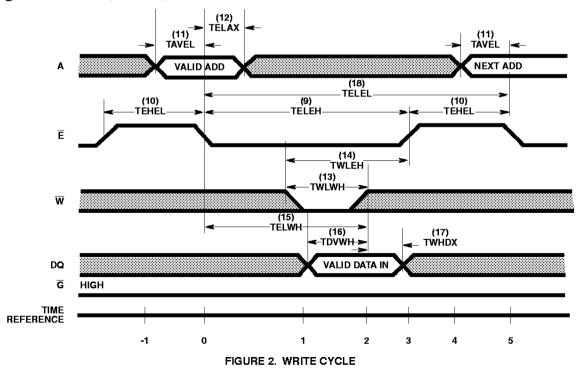
#### NOTES:


- 1. Typical derating 5mA/MHz increase in ICCOP.
- 2. Tested at initial design and after major design changes.

# AC Electrical Specifications $V_{CC}$ = 5V $\pm 10\%$ ; $T_A$ = -40°C to +85°C (HM-6516B-9, HM-6516-9)

|                    |                                  | LIMITS     |     |           |     |       |                 |
|--------------------|----------------------------------|------------|-----|-----------|-----|-------|-----------------|
|                    |                                  | HM-6516B-9 |     | HM-6516-9 |     |       | TEST            |
| SYMBOL             | PARAMETER                        | MIN        | MAX | MIN       | MAX | UNITS | CONDITIONS      |
| (1) TELQV          | Chip Enable Access Time          | -          | 120 | -         | 200 | ns    | (Notes 1, 3)    |
| (2) TAVQV          | Address Access Time              | -          | 120 |           | 200 | ns    | (Notes 1, 3, 4) |
| (3) TELQX          | Chip Enable Output Enable Time   | 10         | -   | 10        | -   | ns    | (Notes 2, 3)    |
| (4) TWLQZ          | Write Enable Output Disable Time | -          | 50  |           | 80  | ns    | (Notes 2, 3)    |
| (5) TEHQZ          | Chip Enable Output Disable Time  | -          | 50  |           | 80  | ns    | (Notes 2, 3)    |
| (6) TGLQV          | Output Enable Output Valid Time  | -          | 80  | -         | 80  | ns    | (Notes 1, 3)    |
| (7) TGLQX          | Output Enable Output Enable Time | 10         | -   | 10        | -   | ns    | (Notes 2, 3)    |
| (8) TGHQZ          | Output Enable Output DisableTime | -          | 50  | -         | 80  | ns    | (Notes 2, 3)    |
| (9) TELEH          | Chip Enable Pulse Negative Width | 120        | -   | 200       | -   | ns    | (Notes 1, 3)    |
| (10) TEHEL         | Chip Enable Pulse Positive Width | 50         | -   | 80        | -   | ns    | (Notes 1, 3)    |
| (11) TAVEL         | Address Setup Time               | 0          | -   | 0         | -   | ns    | (Notes 1, 3)    |
| (12) TELAX         | Address Hold Time                | 30         | -   | 50        | -   | ns    | (Notes 1, 3)    |
| (13) <b>TWLW</b> H | Write Enable Pulse Width         | 120        | -   | 200       | -   | ns    | (Notes 1, 3)    |
| (14) TWLEH         | Write Enable Pulse Setup Time    | 120        | -   | 200       | -   | ns    | (Notes 1, 3)    |
| (15) TELWH         | Write Enable Pulse Hold Time     | 120        | -   | 200       | -   | ns    | (Notes 1, 3)    |
| (16) TDVWH         | Data Setup Time                  | 50         | -   | 80        | -   | ns    | (Notes 1, 3)    |
| (17) TWHDX         | Data Hold Time                   | 10         | -   | 10        | -   | ns    | (Notes 1, 3)    |
| (18) TELEL         | Read or Write Cycle Time         | 170        | -   | 280       | -   | ns    | (Notes 1, 3)    |

## NOTES:


- 1. Input pulse levels: 0.8V to V<sub>CC</sub> 2.0V; Input rise and fall times: 5ns (max); Input and output timing reference level: 1.5V; Output load: 1 TTL gate equivalent, C<sub>L</sub> = 50pF (min) for C<sub>L</sub> greater than 50pF, access time is derated by 0.15ns per pF.
- 2. Tested at initial design and after major design changes.
- 3.  $V_{CC} = 4.5V$  and 5.5V.
- 4. TAVQV = TELQV + TAVEL.



The address information is latched in the on-chip registers on the falling edge of  $\overline{E}$  (T = 0), minimum address setup and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time (T = 1), the outputs become enabled but data is not valid until time (T = 2),  $\overline{W}$  must

remain high throughout the read cycle. After the data has been read,  $\overline{E}$  may return high (T = 3). This will force the output buffers into a high impedance mode at time (T = 4).  $\overline{G}$  is used to disable the output buffers when in a logical "1" state (T = -1, 0, 3, 4, 5). After (T = 4) time, the memory is ready for the next cycle.

## Timing Waveforms (Continued)



The write cycle is initiated on the falling edge of  $\overline{E}$  (T = 0), which latches the address information in the on-chip registers. If a write cycle is to be performed where the output is not to become active,  $\overline{G}$  can be held high (inactive). TDVWH and TWHDX must be met for proper device operation regardless of  $\overline{G}$ . If  $\overline{E}$  and  $\overline{G}$  fall before  $\overline{W}$  falls (read mode), a possible bus conflict may exist. If  $\overline{E}$  rises before  $\overline{W}$ 

rises, reference data setup and hold times to the  $\overline{\mathbb{E}}$  rising edge. The write operation is terminated by the first rising edge of  $\overline{W}$  (T = 2) or  $\overline{\mathbb{E}}$  (T = 3). After the minimum  $\overline{\mathbb{E}}$  high time (TEHEL), the next cycle may begin. If a series of consecutive write cycles are to be performed, the  $\overline{W}$  line may be held low until all desired locations have been written. In this case, data setup and hold times must be referenced to the rising of  $\overline{\mathbb{E}}$ .

# Typical Performance Curve

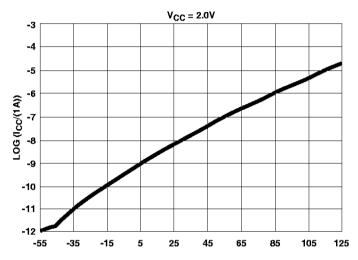



FIGURE 3. TYPICAL ICCDR vs TA