

PART NUMBER MM54HC646J883-ROCV

Rochester Electronics Manufactured Components

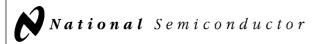
Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)


 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

National Semiconductor is now part of Texas Instruments.

Search http://www.ti.com/ for the latest technical information and details on our current products and services.

January 1988

MM54HC646/MM74HC646 Non-Inverting Octal Bus Transceiver/Registers MM54HC648/MM74HC648 Inverting Octal Bus Transceiver/Registers

General Description

These transceivers utilize advanced silicon-gate CMOS technology, and contain two sets of TRI-STATE® outputs, two sets of D-type flip-flops, and control circuitry designed for high speed multiplexed transmission of data.

Six control inputs enable this device to be used as a latched transceiver, unlatched transceiver, or a combination of both. As a latched transceiver, data from one bus is stored for later retrieval by the other bus. Alternately real time bus data (unlatched) may be directly transferred from one bus to another

Circuit operation is determined by the G, DIR, CAB, CBA, SAB, SBA control inputs. The enable input, G, controls whether any bus outputs are enabled. The direction control, DIR, determines which bus is enabled, and hence the direction data flows: The SAB, SBA inputs control whether the latched data (stored in D type flip flops), or the bus data (from other bus input pins) is transferred. Each set of flip-

flops has its own clock CAB, and CBA, for storing data. Data is latched on the rising edge of the clock.

Each output can drive up to 15 low power Schottky TTL loads. These devices are functionally and pin compatible to their LS-TTL counterparts. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delay: 14 ns
- TRI-STATE outputs
- Bidirectional communication
- Wide power supply range: 2-6V
- Low quiescent supply current: 160 μA maximum (74HC)
- High output current: 6 mA (74HC)

Dual-In-Line Package SELECT CLOCK BA ENABLE VCC BA GRA B1 B2 B3 B4 B5 B6 B7 B9 24 23 22 21 20 19 18 17 16 15 14 13 Order Number MM54HC646/648 or MM74HC646/648 Order Number MM54HC646/648 Order Number MM54HC646/648 TUF/5345-2 TUF/5345-2 Real-Time Transfer Bus B1 to Bus A Real-Time Transfer Bus A to Bus B TRI-STATE® b.a registered trademark or National Semiconductor Corp.

© 1995 National Semiconductor Corporation TL/F/5345

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (V_{IN}) $-\,1.5$ to $V_{\mbox{\footnotesize CC}}\!+\!1.5\mbox{\footnotesize V}$ DC Output Voltage (V_{OUT}) -0.5 to $V_{\mbox{\footnotesize CC}}\!+\!0.5\mbox{\footnotesize V}$ Clamp Diode Current (I_{IK}, I_{OK}) $\pm\,20~mA$ DC Output Current, per pin (I_{OUT}) +35 mA DC V_{CC} or GND Current, per pin (I_{CC}) $\pm\,70~mA$ -65°C to $+150^{\circ}\text{C}$ Storage Temperature Range (T_{STG})

Power Dissipation (P_D) (Note 3) 600 mW S.O. Package only 500 mW Lead Temp. (T_L) (Soldering 10 seconds) 260°C

Operating Conditi	ons		
	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temp. Range (TA)			
MM74HC	-40	+85	°C
MM54HC	-55	+ 125	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed		
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 6.0 \text{ mA}$ $ I_{OUT} \le 7.8 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.96 5.46	3.84 5.34	3.7 5.2	V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	> >
		$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} \le 6.0$ mA $ I_{OUT} \le 7.8$ mA	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		± 0.1	±1.0	±1.0	μΑ
loz	Maximum TRI-STATE Output Leakage	$\frac{V_{OUT} = V_{CC}}{\overline{G} = V_{IH}}$ or GND	6.0V		±0.5	±5.0	±10	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

Truth Table

Inputs						Data	1/O	Operation or Function			
G	DIR	САВ	СВА	SAB	SBA	A1 Thru A8	B1 Thru B8	'ALS646, 'ALS647 'AS646	'ALS648, 'ALS649 'AS648		
X	X	↑ X	X ↑	X X	X X	Input Not Specified	Not Specified Input	Store A, B Unspecified Store B, A Unspecified	Store A, B Unspecified Store B, A Unspecified		
H	X	↑ H or L	↑ H or L	X X	X X	Input	Input	Store A and B Data Isolation, hold storage	Store A and B Data Isolation, hold storage		

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V ± 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} VIL limits are currently tested at 20% of VCC. The above VIL specification (30% of VCC) will be implemented no later than Q1, CY'89.

Truth Table (Continued)

Inputs						Data	1/O	Operation or Function		
G	DIR	САВ	СВА	SAB	SBA	A1 Thru A8	B1 Thru B8	'ALS646, 'ALS647 'AS646	'ALS648, 'ALS649 'AS648	
L	L L	X X	X X	X X	L H	Output	Input	Real-Time B Data to A Bus Stored B Data to A Bus	Real-Time B Data to A Bus Stored B Data to A Bus	
L	H H	X X	X X	L H	X X	Input	Output	Real-Time A Data to B Bus Stored A Data to B Bus	Real-Time A Data to B Bus Stored A Data to B Bus	

AC Electrical Characteristics MM54HC646/MM74HC646, MM54HC648/MM74HC648

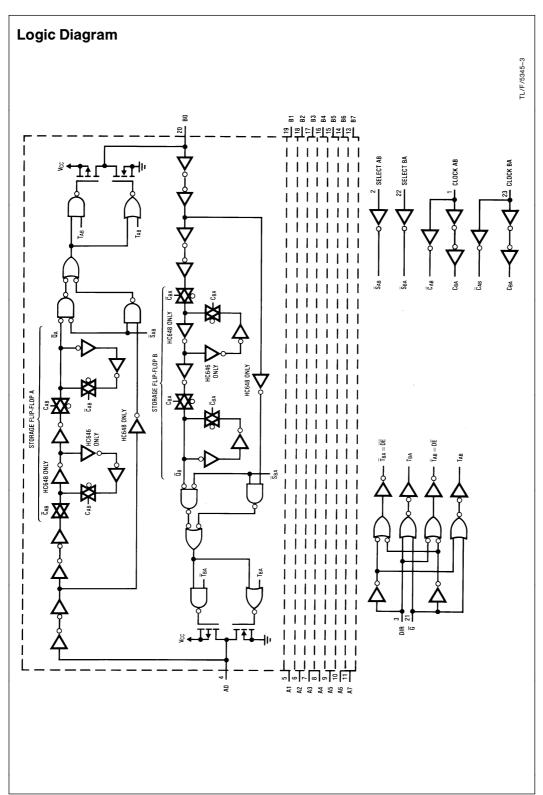
 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_r = t_f = 6$ ns

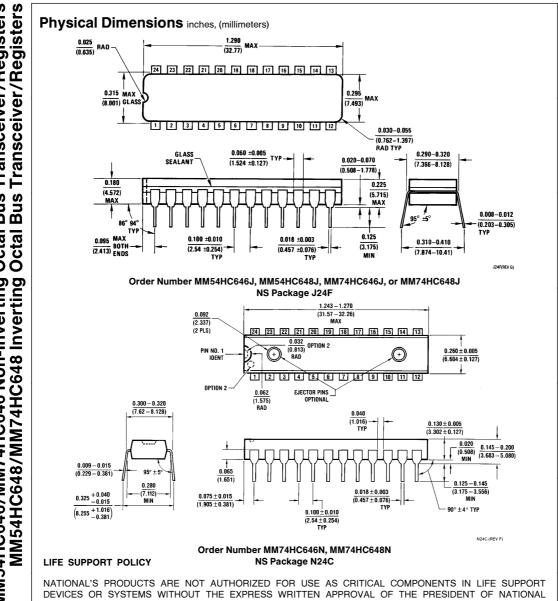
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency		45	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, A or B Input to B or A Output	C _L = 45 pF	14	25	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, CBA or CAB Input to A or B Output	C _L =45 pF	31	40	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, SBA or SAB Input to A or B Output, with A or B high	C _L = 45 pF	35	50	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, SBA or SAB Input to A or B Output, with A or B Iow	C _L = 45 pF	35	50	ns
t _{PZH} , t _{PZL}	Maximum Enable Time G or DIR Input to A or B Output	$R_L = 1 k\Omega$ $C_L = 45 pF$	18	33	ns
t _{PHZ} , t _{PLZ}	Maximum Disable Time, G or DIR Input to A or B Output	$R_L = 1 k\Omega$ $C_L = 5 pF$	17	30	ns

AC Electrical Characteristics MM54HC646/MM74HC646, MM54HC648/MM74HC648

 $V_{CC}\!=\!2.0\text{--}6.0\text{V},\,C_L\!=\!50$ pF, $t_r\!=\!t_f\!=\!6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units			
				Тур	Typ Guaranteed Limits						
f _{MAX}	Maximum Operating Frequency	C _L =50 pF	2.0V 4.5V 6.0V		5 27 31	4 21 24	3 18 20	MHz MHz MHz			
t _{PHL} , t _{PLH}	HL, t _{PLH} Maximum Propagation Delay, A or B Input	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	60 80	180 200	189 250	225 300	ns ns			
to B or A C	to B or A Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	21 30	30 40	37 50	45 60	ns ns			
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	18 22	26 35	31 44	39 53	ns ns			
t _{PHL} , t _{PLH}	t _{PHL} , t _{PLH} Maximum Propagation Delay, CBA or CAB	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	110 150	220 270	275 338	330 405	ns ns			
Inpu	Input to A or B Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	31 40	44 54	55 68	66 81	ns ns			
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	28 34	38 47	47 59	57 71	ns ns			


H = High Level L = Low Level X = Irrelevant ↑ = low-to-high level transition


The data output functions i.e., data at the bus pins may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled. The data output functions i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

AC Electrical Characteristics $\mbox{\sc MM54HC646/MM74HC646, MM54HC648/MM74HC648}$ (Continued) $\mbox{\sc V}_{CC}\!=\!2.0-6.0\mbox{\sc V}_{L}\!=\!50\mbox{\sc pF},\ t_{r}\!=\!t_{f}\!=\!6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	vcc	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed		
t _{PHL} , t _{PLH}	Maximum Propagation Delay, SBA or SAB	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	85 110	170 220	214 277	253 328	ns ns
	Input to A or B Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	17 22	34 44	43 55	51 66	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	14 19	29 37	36 47	43 56	ns ns
t_{PZL} , t_{PZL}	Maximum Output Enable Time, G Input or DIR to A or B	$R_L=1 k\Omega$						
	Output	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V	80 120	175 225	219 281	263 338	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	4.5V 4.5V	23 31	35 45	44 56	53 68	ns ns
		$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	6.0V 6.0V	21 27	30 38	37 48	45 57	ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time, G Input to A or B Output	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0V 4.5V 6.0V	85 23 21	175 35 30	219 44 37	263 53 45	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time	C _L =50 pF	2.0V 4.5V 6.0V		60 12 10	75 15 13	90 18 15	ns ns ns
ts	Minimum Set Up Time		2.0V 4.5V 6.0V		100 20 17	125 25 21	150 30 25	ns ns ns
t _H	Minimum Hold Time		2.0V 4.5V 6.0V		0 0 0	0 0 0	0 0 0	ns ns ns
t _W	Minimum Pulse Width of Clock		2.0V 4.5V 6.0V		80 16 14	100 20 18	120 24 21	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)			90				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance			15	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD}$, V_{CC}^2 f+I_{CC}, and the no load dynamic current consumption, I_S= C_{PD} V_{CC} f+I_{CC}. Note 6: Refer to back of this section for Typical MM54/74HC AC Switching Waveforms and Test Circuits.

SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Europe Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-532 13 6 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton F Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor