

PART NUMBER MM54HCT192J-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

PART NUMBER MM54HCT192J-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

MM54HCT192/MM74HCT192 Synchronous Decade Up/Down Counters

General Description

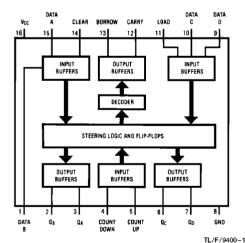
These high speed synchronous counters utilize advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of CMOS technology, along with the speeds of low power Schottky TTL. The MM54HCT192/MM74HCT192 is a decade counter having two separate clock inputs, an COUNT UP input and a COUNT DOWN input. All outputs of the flip-flops are simultaneously triggered on the low-to-high transition of either clock while the other input is held high. The direction of counting is determined by which input is clocked.

This device has TTL compatible inputs. It can drive 15 LS-TTL loads.

This counter may be preset by entering the desired data on the DATA A, DATA B, DATA C, and DATA D inputs. When the LOAD input is taken low, the data is loaded independently of either clock input. This feature allows the counter to be used as a divide-by-n counter by modifying the count length with the preset inputs.

In addition, the HCT192 can also be cleared. This is accomplished by inputting a high on the CLEAR input. All 4 internal stages are set to a low level independently of either COUNT input.

Both a BORROW and CARRY output are provided to enable cascading of both up and down counting functions. The BORROW output produces a negative-going pulse when the counter underflows and the CARRY outputs a pulse when the counter overflows. The counter can be cascaded by connecting the CARRY and BORROW outputs of one device to the COUNT UP and COUNT DOWN inputs, respectively, of the next device.


All inputs are protected from damage due to static discharge by diodes to $\ensuremath{V_{CC}}$ and ground.

Features

- Low quiescent supply current: 80 μ A maximum (74HCT Series)
- Low input current: 1 µA maximum
- TTL compatible inputs

Connection Diagram

Dual-In-Line Package

Order Number MM54HCT192 or MM74HCT192

Truth Table

Count					
Up	Down	Clear	Load	Function	
1	Н	L	Н	Count Up	
Н	↑	L	Н	Count Down	
X	X	Н	Х	Clear	
X	X	L	L	Load	

H = high level

L = low level

 \uparrow = transition from low-to-high

X = don't care

Absolute Maximum Ratings (Notes 1 and 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to $+7.0V$
DC Input Voltage (V _{IN})	-1.5 V to $V_{CC} + 1.5$ V
DC Output Voltage (V _{OUT})	-0.5 V to $V_{CC} + 0.5$ V
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per Pin (I _{OUT})	\pm 25 mA
DC V _{CC} or GND Current, per Pin(I _{CC})	\pm 50 mA
Storage Temperature Range (T_{STG})	-65°C to +150°C

Power Dissipation (PD)

 (Note 3)
 600 mW

 S.O. Package only
 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Operating Conditions							
	Min	Max	Units				
Supply Voltage (V _{CC})	4.5	5.5	V				
DC Input or Output Voltage							
(V _{IN} , V _{OUT})	0	V_{CC}	V				
Operating Temp. Range (TA)							
MM74HCT	-40	+85	°C				
MM54HCT	-55	+ 125	°C				
Input Rise or Fall Times							
(t _r , t _f)		500	ns				

DC Electrical Characteristics $V_{CC} = 5V \pm 10\%$ unless otherwise specified

Symbol	Parameter	Conditions	T _A = 25°C		74HCT T _A = -40°C to +85°C	54HCT T _A = -55°C to + 125°C	Units
				yp Guaranteed Limits		imits	
V _{IH}	Minimum High Level Input Voltage			2.0	2.0	2.0	\ \
V _{IL}	Maximum Low Level Input Voltage			0.8	0.8	0.8	\ \
V _{OH}	Minimum High Level Output Voltage		4.2		V _{CC} -0.1 3.84 4.84	V _{CC} -0.1 3.7 4.7	> > >
V _{OL}	Maximum Low Level Voltage	$\begin{split} & V_{\text{IN}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ & _{\text{OUT}} = 20 \ \mu\text{A} \\ & _{\text{OUT}} = 4.0 \ \text{mA}, \ V_{\text{CC}} = 4.5 \text{V} \\ & _{\text{OUT}} = 4.8 \ \text{mA}, \ V_{\text{CC}} = 5.5 \text{V} \end{split}$		0.1 0.26 0.26	0.1 0.33 0.33	0.1 0.4 0.4	> > >
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}		± 0.1	± 1.0	± 1.0	μΑ
lcc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$		8	80	160	μΑ
		V _{IN} = 2.4V or 0.5V (Note 4)	0.1	1.0	1.2	1.3	mA

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

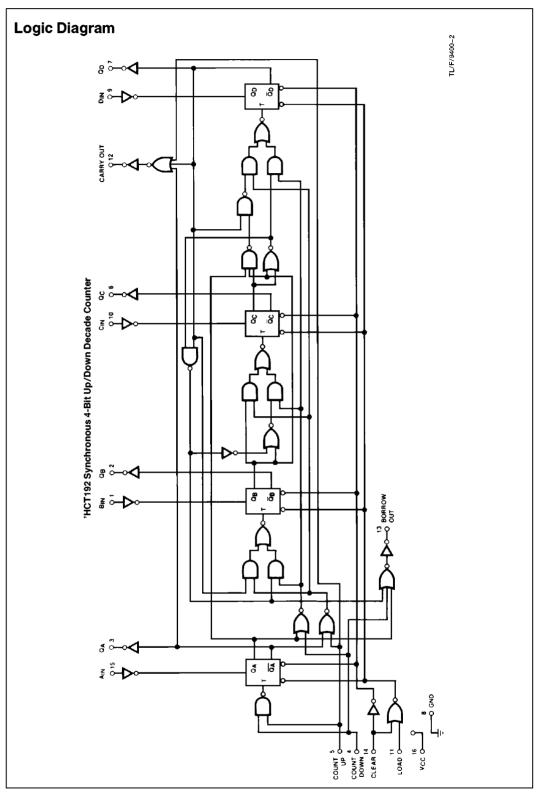
Note 2: Unless otherwise specified all voltages are referenced to ground.

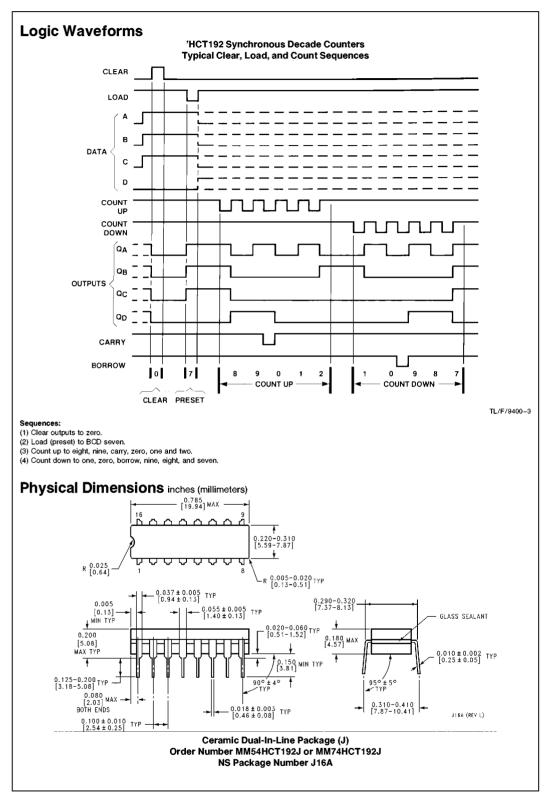
Note 3: Power dissipation temperature derating—plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: Measured per pin, all other inputs held at V_{CC} or GND.

AC Electrical Characteristics

(Note 6) $V_{CC} = 5V$, $T_A = 25$ °C, $C_L = 15$ pF, $t_r = t_f = 6$ ns (unless otherwise specified)


Symbol	Parameter	From (Input)	To (Output)	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Clock Frequency				35		MHz
^t PLH, PHL	Maximum Propagation Delay Time	Load	QA, QB, QC, QD		26		ns
^t PLH, PHL	Maximum Propagation Delay Time	Data A, B, C, D,	QA, QB, QC, QD		25		ns
t _{PLH} , PHL	Maximum Propagation Delay Time	Count-Up or -Down	QA, QB, QC, QD		26		ns
^t PLH, PHL	Maximum Propagation Delay Time	Count-Up	Carry		22		ns
t _{PLH} , PHL	Maximum Propagation Delay Time	Count-Down	Borrow		22		ns
t _{PLH} , PHL	Maximum Propagation Delay Time	Clear	QA, QB, QC, QD		25		ns


AC Electrical Characteristics (Note 6) $V_{CC} = 5V \pm 10\%$, $C_L = 50$ pF (unless otherwise specified)

Symbol	Parameter	From (Input)	To (Output)		T=25°C	74HC T= -40°C to +85°C	54HC T = -55°C to +125°C	Units
				Тур		Guaranteed Limits		
f _{MAX}	Maximum Clock Frequency			32	20	16	13	MHz
[†] PLH, PHL	Maximum Propagation Delay Time	Load	QA, QB, QC, QD	29	44	55	66	ns
^t PLH, PHL	Maximum Propagation Delay Time	Data A	QA, QB, QC, QD	28	40	50	60	ns
^t PLH, PHL	Maximum Propagation Delay Time	Count-Up or -Down	QA, QB QC, QD	30	43	54	65	ns
[†] PLH, PHL	Maximum Propagation Delay Time	Count-Up	Carry	25	30	38	45	ns
[†] PLH, PHL	Maximum Propagation Delay Time	Count- Down	Borrow	25	30	38	45	ns
[†] PLH, PHL	Maximum Propagation Delay Time	Clear	QA, QB QC, QD	28	35	44	53	ns
t _W	Minimum Clock Pulse Width			16	25	31	38	ns
ts	Minimum Setup Time Data before Load-LH				20	25	30	ns
t _H	Minimum Hold Time Data after Load-LH			-3	5	6	8	ns
^t REM	Minimum Removal Time Load to Count			-2	5	6	8	ns
t _{REM}	Minimum Removal Time Clear to Count			2	5	6	8	ns
t _W	Minimum Load Pulse Width			18	20	25	30	ns
t _W	Minimum Clear Pulse Width			8	20	25	30	ns
[†] TLH, THL	Output Rise or Fall Time		·	10	15	19	22	ns
C _{PD}	Power Dissipation Capacitance			40				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$ and the no load dynamic current consumption, $I_s = C_{PD} \ V_{CC} \ f + I_{CC}$.

Note 6: Refer to Section 1 for Typical MM54/74HCT AC Switchforms and Test Circuits.

Physical Dimensions inches (millimeters) (Continued) $\frac{0.740 - 0.780}{(18.80 - 19.81)}$ $\frac{0.090}{(2.286)}$ 16 15 14 13 12 11 10 9 16<u>15</u> INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 1 2 _ 1 2 3 4 5 6 7 8 OPTION 01 OPTION 02 0.065 0.130 ± 0.005 (3.302 ± 0.127) 4º TYP OPTIONAL $\frac{0.060}{(1.524)}$ TYP $\frac{0.300 - 0.320}{(7.620 - 8.128)}$ (1.651) ¥ $\frac{0.145 - 0.200}{(3.683 - 5.080)}$ 95°±5° 0.008 = 0.016 (0.203 = 0.406) TYP 90°±4° TYP 0.020 0.280 (7.112) 0.125 - 0.150 (3.175 - 3.810) 0.030 ± 0.015 (0.762 ± 0.381) MIN (0.325 +0.040 -0.015 0.014 - 0.023 0.100 ± 0.010 (0.356 = 0.584) TYP (2.540 ± 0.254) TYP 0.050 ± 0.010 (1.270 ± 0.254) TYP N16E (REV F) (8.255 +1.016 -0.381 Molded Dual-In-Line Package (N) Order Number MM74HCT192N NS Package Number N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86
Email: cnjwge@tevm2.nsc.com
Deutsch 16t (+49) 0-180-530 85 85
English 16t (+49) 0-180-532 78 32
Français 16t (+49) 0-180-532 93 58
Italiano 16t (+49) 0-180-532 18 60

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408