

PART NUMBER UC2633N-G-ROCV

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer. (OCM)

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level

Qualified Suppliers List of Distributors (QSLD)

 Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

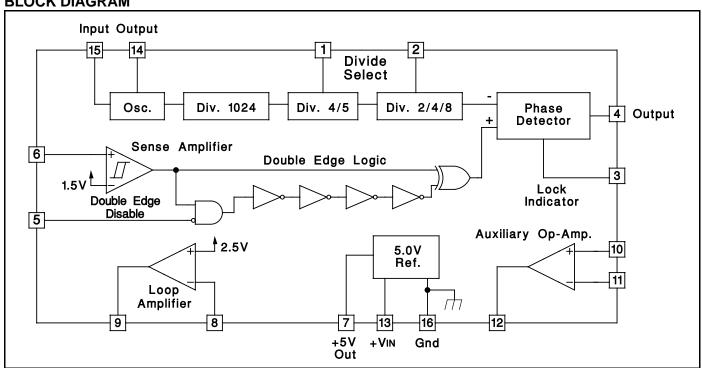
UC1633 UC2633 UC3633

Phase Locked Frequency Controller

FEATURES

- Precision Phase Locked Frequency Control System
- Crystal Oscillator
- Programmable Reference Frequency Dividers
- Phase Detector with Absolute Frequency Steering
- Digital Lock Indicator
- Double Edge Option on the Frequency Feedback Sensing Amplifier
- Two High Current Op-Amps
- 5V Reference Output

DESCRIPTION


The UC1633 family of integrated circuits was designed for use in phase locked frequency control loops. While optimized for precision speed control of DC motors, these devices are universal enough for most applications that require phase locked control. A precise reference frequency can be generated using the device's high frequency oscillator and programmable frequency dividers. The oscillator operates using a broad range of crystals, or, can function as a buffer stage to an external frequency source.

The phase detector on these integrated circuits compares the reference frequency with a frequency/phase feedback signal. In the case of a motor, feedback is obtained at a hall output of other speed detection device. This signal is buffered by a sense ampilfier that squares up the signal as it goes into the digital phase detector. The phase detector responds proportionally to the phase error between the reference and the sense amplifier output. This phase detector includes absolute frequency steering to provide maximum drive signals when any frequency error exists. This feature allows optimum start-up and lock times to be realized.

Two op-amps are included that can be configured to provide necessary loop filtering. The outputs of the op-amps will source or sink in excess of 16mA, so they can provide a low impedence control signal to driving circuits.

Additional features include a double edge option on the sense amplifier that can be used to double the loop reference frequency for increased loop bandwidths. A digital lock signal is provided that indicates when there is zero frequency error, and a 5V reference output allows DC operating levels to be accurately set.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Note1: Voltages are referenced to ground, (Pin 16). Currents are positive into, negative out of, the specified terminals. Note 2: Consult Packaging Section of Databook for thermal limitations and considerations of package.

CONNECTION DIAGRAMS

PLCC-20 (TOP VIEW)	PACKAGE PIN FUNCTION		
Q Package	FUNCTION	PIN	
	N/C	1	
	Div 4/5 Input	2	
	Div 2/4/8 Input	3	
	Lock Indicator Output	4	
	Phase Detector Output	5	
	N/C	6	
	Dbl Edge Disable Input	7	
3 2 1 20 19	Sense Amp Input	8	
∮4	5V Ref Output	9	
5 17	Loop Amp Inv Input	10	
6 16	N/C	11	
7 15	Loop Amp Output	12	
] -	Aux Amp Non-Inv Input	13	
8 14 14 13 14 13 14 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	Aux Amp Inv Input	14	
0 10 11 12 10	Aux Amp Output	15	
	N/C	16	
	+VIN	17	
	OSC Output	18	
	OSC Input	19	
	Ground	20	

ELECTRICAL CHARACTERISTICS: (Unless otherwise stated, these specifications apply for TA = 0°C to +70°C for the UC3633, -25°C to +85°C for the UC2633, -55°C to +125°C for the UC1633, +Vin = 12V; TA=TJ.)

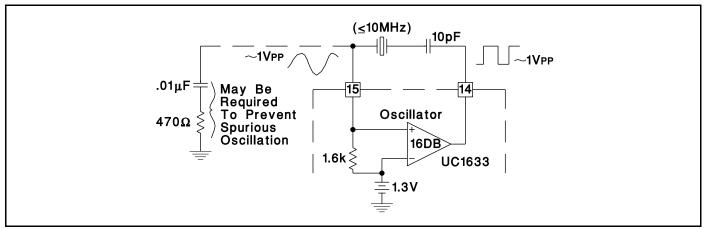
PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Current	+VIN = 15V		20	28	mA
Reference					
Output Voltage (VREF)		4.75	5.0	5.25	V
Load Regulation	IOUT = 0V to 7mA		5.0	20	mV
Line Regulation	+VIN = 8V to 15V		2.0	20	mV
Short Circuit Current	Vout = 0V	12	30		mA
Oscillator					
DC Voltage Gain	Oscillator Input to Oscillator Output	12	16	20	dB
Input DC Level (VIB)	Oscillator Input Pin Open, TJ = 25°C	1.15	1.3	1.45	V
Input Impedance (Note 3)	$VIN = VIB \pm 0.5V$, $TJ = 25$ °C	1.3	1.6	1.9	kΩ
Output DC Level	Oscillator Input Pin Open, TJ = 25°C	1.2	1.4	1.6	V
Maximum Operating Frequency		10			MHz
Dividers					
Maximum Input Frequency	Input = 1VPP at Oscillator Input	10			MHz
Div. 4/5 Input Current	Input = 5V (Div. by 4)		150	500	μΑ
	Input = 0V (Div. by 5)	-5.0	0.0	5.0	μΑ
Div. 4/5 Threshold		0.5	1.6	2.2	V

Note 3: These impedence levels will vary with T_J at about 1700ppm/°C

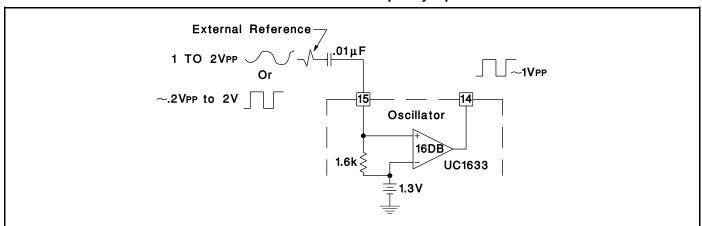
ELECTRICAL (Unless otherwise stated, these specifications apply for TA = 0°C to +70°C for the UC3633, **CHARACTERISTICS (cont.):** -25°C to +85°C for the UC2633, -55°C to +125°C for the UC1633, +VIN = 12V; TA=TJ.)

PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Dividers (cont.)			_		-
Div. 2/4/8 Input Current	Input = 5V (Div. by 8)		150	500	μΑ
	Input = 0V (Div. by 2)	-500	-150		μΑ
Div. 2/4/8 Open Circuit Voltage	Input Current = 0μA (Div. by 4)	1.5	2.5	3.5	V
Div. by 2 Threshold		0.20	0.8		V
Div. by 4 Threshold		1.5		3.5	V
Div. by 8 Threshold	Volts Below VREF	0.20	0.8		V
Sense Amplifier					
Threshold Voltage	Percent of VREF	27	30	33	%
Threshold Hysteresis			10		mV
Input Bias Current	Input = 1.5V	-1.0	-0.2		μΑ
Double Edge Disable Input			_		-
Input Current	Input = 5V (Disabled)		150	500	μΑ
	Input = 0V (Enabled)	-5.0	0.0	5.0	μΑ
Threshold Voltage		0.5	1.6	2.2	V
Phase Detector			_		-
High Output Level	Positive Phase/Freq. Error, Volts Below VREF		0.2	0.5	V
Low Output Level	Negative Phase/Freq. Error		0.2	0.5	V
Mid Output Level	Zero Phase/Freq. Error, Percent of VREF	47	50	53	%
High Level Maximum Source Current	Vout = 4.3V	2.0	8.0		mA
Low Level Maximum Sink Current	Vout = 0.7V	2.0	5.0		mA
Mid Level Output Impedance (Note 3)	IOUT = -200 to $+200\mu$ A, TJ = 25 °C	4.5	6.0	7.5	kΩ
Lock Indicator Output					
Saturation Voltage	Freq. Error, IOUT = 5mA		0.3	0.45	V
Leakage Current	Zero Freq. Error, Vout = 15V		0.1	1.0	μΑ
Loop Amplifier					
NON INV. Reference Voltage	Percent of VREF	47	50	53	%
Input Bias Current	Input = 2.5V	-0.8	-0.2		μΑ
AVOL		60	75		dB
PSRR	$+V_{IN} = 8V \text{ to } 15V$	70	100		dB
Short Circuit Current	Source, V _{OUT} = 0V	16	35		mA
	Sink, $V_{OUT} = 5V$	16	30		mA
Auxiliary Op-Amp					
Input Offset Voltage	$V_{CM} = 2.5V$			8	mV
Input Bias Current	$V_{CM} = 2.5V$	-0.8	-0.2		μΑ
Input Offset Current	Vcm = 2.5V		.01	0.1	μА
AVOL		70	120		dB
PSRR	+V _{IN} = 8V to 15V	70	100		dB
CMRR	Vcm = 0V to 10V	70	100		dB
Short Circuit Current	Source, Vout = 0V	16	35		mA
	Sink, Vout = 5V	16	30		mA

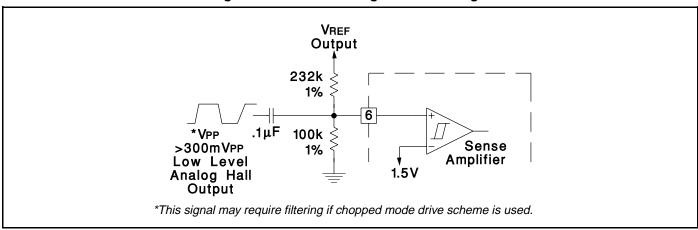
Note 3: These impedence levels will vary with TJ at about 1700ppm/°C


APPLICATION AND OPERATING INFORMATION Determining the Oscillator Frequency

The frequency at the oscillator is determined by the desired RPM of the motor, the divide ratio selected, the number of poles in the motor, and the state of the double edge select pin.


fosc(Hz) = (Divide Ratio) • (Motor RPM) • (1/60 SEC/MIN) • (No. of Rotor Poles/2) • (x 2 if Pin 5 Low)

The resulting reference frequency appearing at the phase detector inputs is equal to the oscillator frequency divided by the selected divide ratio. If the double edge option is used, (Pin 5 low), the frequency of the sense amplifier input signal is doubled by responding to both the rising and falling edges of the input signal. Using this option, the loop reference frequency can be doubled for a given motor RPM.

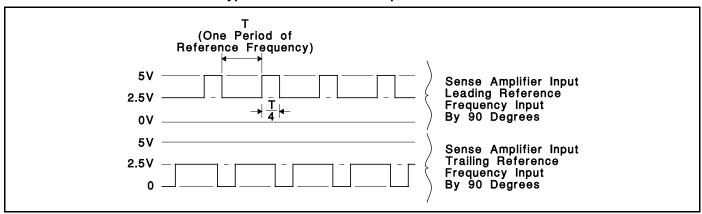

Recommended Oscillator Configuration Using AT Cut Quartz Crystal

External Reference Frequency Input

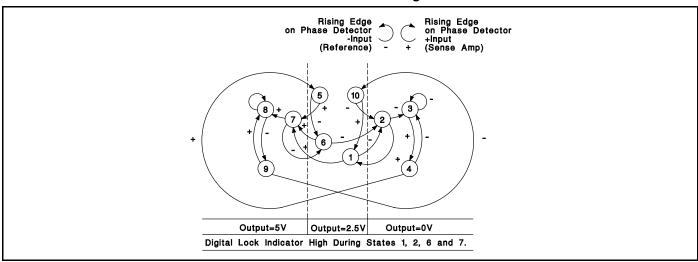
Method for Deriving Rotation Feedback Signal from Analog Hall Effect Device

APPLICATION AND OPERATION INFORMATION Phase Detector Operation

The phase detector on these devices is a digital circuit that responds to the rising edges of the detector's two inputs. The phase detector output has three states: a high, 5V state, a low, 0V state, and a middle, 2.5V state. In the high and low states the output impedance of the detector is low and the middle state output impedence is high, typically $6.0k\Omega$. When there is any static frequency difference between the inputs, the detector output is fixed at its high level if the +input (the sense amplifier signal) is greater in frequency, and fixed at its low level if the -input (the reference frequency signal) is greater in frequency.

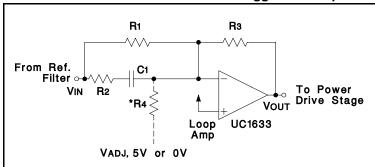

When the frequencies of the two inputs to the detector are equal, the phase detector switches between its middle state and either the high or low states, depending on the relative phase of the two signals. If the +input is leading in phase then, during each period of the input frequency, the detector output will be high for a time equal to the time difference between the rising edges of the inputs, and will be at its middle level for the remainder of the period. If the phase relationship is reversed, then the detector will go low for a time proportional to the phase difference of the inputs. The resulting gain of the phase detector. kø, is

 $5V/4\pi$ radians or about 0.4V/radian. The dynamic range of the detector is $\pm 2\pi$ radians.


The operation of the phase detector is illustrated in the figures below. The upper figure shows typical voltage waveforms seen at the detector output for leading and lagging phase conditions. The lower figure is a state diagram of the phase detector logic. In this figure, the circles represent the 10 possible states of the logic, and the connecting arrows represent the transition events/paths to and from these states. Transition arrows that have a clockwise rotation are the result of a rising edge on the +input, and conversely, those with counter-clockwise rotation are tied to the rising edge of the -input signal.

The normal operational states of the logic are 6 and 7 for positive phase error, 1 and 2 for a negative phase error. States 8 and 9 occur during positive frequency error, 3 and 4 during negative frequency error. States 5 and 10 occur only as the inputs cross over from the frequency error to a normal phase error only condition. The level of the phase detector output is determined by the logic state as defined in the state diagram figure. The lock indicator output is high, off, when the detector is in states 1, 2, 6, or 7.

Typical Phase Detector Output Waveforms



Phase Detector State Diagram

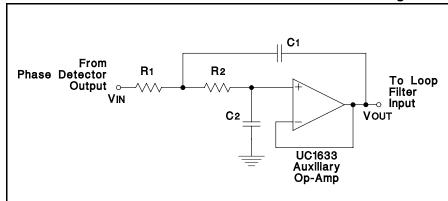
APPLICATION AND OPERATION INFORMATION

Suggested Loop Filter Configuration

* The static phase error of the loop is easily adjusted by adding resistor, R4, as shown. To lock at zero phase error R4 is determined by:

$$R_4 = \frac{2.5V \bullet R_3}{|\Delta V_{OUT}|}$$

$$\frac{V_{OUT}}{V_{IN}}(s) = \frac{R_3}{R_1} \bullet \frac{1 + \frac{s}{\omega}z}{1 + \frac{s}{\omega}p}$$

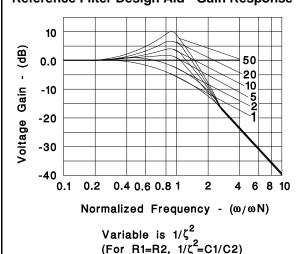

$$\omega_p = \frac{1}{R_2 C_1}$$

$$\omega_z = \frac{1}{(R_1 + R_2) C_1}$$

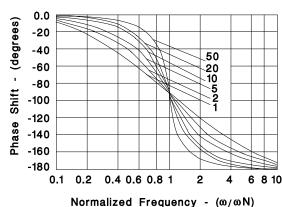
Where: $|\Delta VOUT| = |VOUT - 2.5V|$ and Vout = DC Operating Voltage At Loop Amplifier Output During Phase Lock

If: (VOUT - 2.5) > 0, R4 Goes to 0V (Vout - 2.5) < 0, R4 Goes to 5.0V

Reference Filter Configuration

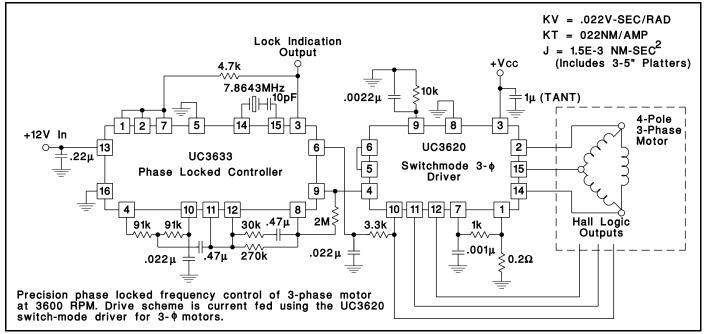

$$\frac{V_{OUT}}{V_{IN}}(s) = \frac{1}{1 + \frac{s 2 \zeta}{\omega_{N}} + \frac{s^2}{\omega_{N}^2}}$$

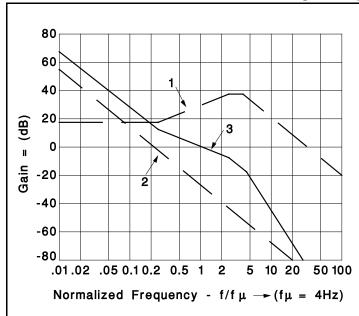
$$\omega_N = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}$$


$$\zeta = \frac{1}{2Q} = \frac{1}{2} \sqrt{\frac{C_2}{C_1}} \frac{R_1 + R_2}{\sqrt{R_1 R_2}}$$

Note: with
$$R_1 = R_2$$
, $\zeta = \sqrt{\frac{C^2}{C_1}}$

Reference Filter Design Aid - Gain Response


Reference Filter Design Aid - Phase Response


Variable is $1/\zeta^2$ (For R1=R2, $1/\zeta^2$ =C1/C2)

APPLICATION AND OPERATION INFORMATION

Design Example

Bode Plots - Design Example Open Loop Response

- 1.) *KLF(s) KRF(s)*
- 2.*) $\frac{N \bullet K\phi \bullet GPD \bullet KT}{s^2 \bullet J}$
- 3.) Combined Overall Open Loop Response

Where:

KLF(s) = Loop Filter Response

KRF(s) = Reference Filter Response

N = 4 (Using Double Edge Sensing With 4 Pole Motor)

 $K\phi$ = Phase Detector Gain (.4V/RAD)

GPD = Power Stage Transductance (1A/V)

KT = Motor Torque Constant (.022NM/A)

J = Motor Moment of Inertia (.0015NM/A - SEC²)

 $s = 2\pi i f$

*Note: For a current mode driver the electrical time constant, LM/RM, of the motor does not enter into the small signal response. If a voltage mode drive scheme is used, then the asymptote, plotted as **2** above, can be approximated by:

$$\frac{N \bullet K \phi \bullet K_{PD} \bullet KT}{s^2 \bullet J \bullet RM} \quad \text{if: } RM > KT \sqrt{\frac{LM}{J}} \quad \text{and, } \quad \frac{KT^2}{2\pi \bullet J \bullet RM} < f < \frac{RM}{2\pi \bullet LM}$$

Here: KPD = Voltage gain of Driver Stage R_M = Motor Winding Resistance L_M = Motor Winding Inductance

PACKAGE OPTION ADDENDUM

www.ti.com 21-Aug-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9098701Q2A	OBSOLETE	TO/SOT	L	20	TBD	Call TI	Call TI
5962-9098701QEA	OBSOLETE	CDIP	J	16	TBD	Call TI	Call TI
UC1633J	OBSOLETE	CDIP	J	16	TBD	Call TI	Call TI
UC1633J883B	OBSOLETE	CDIP	J	16	TBD	Call TI	Call TI
UC2633N	OBSOLETE	PDIP	N	16	TBD	Call TI	Call TI
UC3633DW	OBSOLETE	SOIC	DW	16	TBD	Call TI	Call TI
UC3633DWTR	OBSOLETE	SOIC	DW	16	TBD	Call TI	Call TI
UC3633N	OBSOLETE	PDIP	N	16	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated